
On the vertical rotation

of a sand heap
Abraham Medina,* Erick Luna** y CesarTreviño**

Abstnut Thiswork is a phenomenological attempt
topredict the dynamic response ofa sand heap due
lo rotation about its vertical axis. íVe have made

experiments andwe've developed a model in arder

to describe the ejfect ofthe rotation on the pile's
surfacefrom a dimensionlessforcé balance equation
using the Coulombyield law. Wegot a very good
correspondence between the experimentalpatterns

and the theory, depending on the material through
thesolidfriction angle and weformulated a
plausible suggestionfor the way in which thepile's
history is determined by dynamic (Fraude number)

and material ffnction coefficient) parameters.

Introduction

The stucfy of granular media has received great
attention in the literatuie in the last years, due to its

related fascinating phenomena, such as dilatance
(Onoda and Liniger, 1990), aiching (Edwards and
Oakeshott, 1989), segregation (Jullien, et. al., 1992;
Britgewater, et. al., 1985) or fluid-like behavior

(Haff, 1983; Nederman, et. al, 1982) which give
origin to peculiar effects not occurring in other
aggregation states such as liquids and solids
(Wieghardt, 1975;Baxter, et. al, 1993).These latter
phenomena make difficult any theoretical descrip-

tion valid over a wide range of parameters. Even
with an ideal granular cohesionless media made up
of monodisperse rigid grains, the analysis presents
such complexity that attempts to describe its dyna-
mical legimes are of limited success(Mehta, 1992).

This paper deals with the free surface deformation
of dry, noncohesive granular material during an axi-
symmetrical vertical rotation (parallel to gravity for
cé). This phenomenon is interesting because the
dynamical responso of these materials composed of
dense collections ofsolid grains, are not well unders-

tood. In order to study this problem, we made a
theoretical approach using a forcé balance equation
which includes the Coulomb yield law and compared
both the theoretical and experimental results.

showing a veiy good agreement between them. The

experiments weie performed using ideal granular
material like Ottawa sand, made up of round grains
that are more or less uniformly sized. Though our

experiments were made using near two-dimensional
bins, th^ showed interesting Sicts, which deviates

from tirase found in newtonian fluids. We obtained

multi-valued steady state solutions in terms of the

material parameter p (the fiiction coefficient) and

the Fronde number, (Landau y Lifshits, 1959;

Zierep, 1971), to be defined later. These solutions

showed strong difiérences in comparison with a li-
quid. In particular, the analysis gives different

steady-state solutions (hysteresis) for a given valué
of the Fronde number if we reach it slowly coming
up or going down. In the next section (Edwards and

Oakeshott, 1989) we describe the two-dimensional

experimental set-up and results. In Section II we

present the theoretical analysis based on the Ck)u-
lomb's law. Comparison of experimental and theo
retical results are shown in Section III. Finally in

Section IV we present the final remarks and conclu-

sions.

L Experiments

In order to observe and characterize the surface

patterns during rotation, we did experiments with

sand and got the fiee surface profiles for difTeient
motion states. Figure 1 illustrates a schematic fron

tal view of the experimental set-up. Due to 3-D vi-
sualization difficulties of surfaces in circular cylin-

ders we used thin rectangular bins ofplexiglass with

the following dimensions: 30 cm length (R = 15
cm), 0.4 cm width and 30 cm height. We used gra-
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nular material composed of Ottawa sand with mean

grain's size between 0.03-0.06 cm, bulk density p =

grcm'̂ , mean valué of solid friction angle = 31°,
and friction coefficient p= ^c= 0.53.

Figure 1. Güomeihyof the sysiem

2R

The bins were ñlled with granular material up to
14 cm height and rotated on the z - axis (parallel to

the gravi^ vector) with a slowly change on the an

gular velocities, Cí, taking care of no introducing

additíonal forces. The angular velocityvaried from O
to up 52.78 s"'. The resulting Froude number,
relating the centrifugal to gravity forces, is defíned

as:

Fr =
g

(1)

Where g is the magnitude of gravity acceleration.
Therefore, in the experiments we use a Froude num
ber such as O < Fr < 43. Three dimensional effects

werenot observed in the thin bins (therewas not any
important kind of deformation in the azimutal fv
direction), and therefore the heaps can be treated to
be two dimensional. The observations were made re-

cording the motion with a CCD-camera to 500 fra-

mes per second.

We found several interesting patterns as we in-
creased the Froude number, starting from zero: A
first pattem, which conserves the initial free surface,
occurs between O< F- < 1.36. As the Froude number
is increased fiirther, the free surface changes gene-
rating a peak at the center. This peak finally va-
nishes as the Froude number reaches a valué of

approximately F,« 26.14. This shape is maintained
for larger Froude numbers with increasing slopes.

Another patterns can be obtained when we reduce
slowly the Froude number from the máximum valué
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reached, F,« 43. In this case, the surface shapes are
clearly difierent than those obtained when we in

creased the Froude number. The final state is rea

ched when F, = O, showing the free surface profiles
represented by two symmetrical straight Unes to an

angle of 31° from the horizontal. All shapes obtai
ned are reproducible showing an hysteretic behavior.
For a given valué of the Froude number we got diffe-

rent shapes depending if we arrive to this number

coming up or going down. Otherwise, when the ro-

tation device was not well fixed, vibrations appeared

at large Froude numbers and a hole or cráter was

formed on the heap. With care, we can avoid this
unwanted phenomenon. In Section III, we present

some experimental results compared with the theoiy
to be developed in the next Section.

EL Theoretical analysis

A common mechanical state of a cohesionlessgranu
lar material is called the quasi-static regime, where
low shear rates and high concentrations dominate.

An example of it is a sand pile whose free surface

forms a plañe with a constant slope with the hori

zontal: this one is subject to shear stress (r) and

normal stress (N) that tends to move the surface's

pile in accordance with the Coulomb yield law
(Coulomb, 1773)established two centuries ago:

TI= N/j\ a I< Ny, = Ntan^^ (2)

This formula expresses that the slope does not chan
ge if the shear stress is less than the product of the

normal stress and the fiiction coefiicient p. When

the yield condition (equality) is reached, that is a =

±1, the pile's surface yields, occurring a granular
flow (Sokolovskii, 1965). This situation is also ca

lled the critical state in soil mechanics (Schofield

and Wroth, 1968). Relation 2 (Edwards and Oa-

keshott, 1989)has been used in studyingthe stability
of slopes (Sokolovskii, 1965; Rajchenbach, 1990),
but it also can be used here to explain the problem of
rotation of cohesionlessgranular piles in containers.

The criteria that supports the use of equation 2 is
the continuum point of view of granular media. In
this case we can formúlate a balance of forces equa
tion for a small element of volumewith density p at
the free surface of the granular pile. Using cylindri-
cal coordinates, this equation can be written as:

p[q'í- cosO-g sin^j=p[íí'r sini9 +gcos^] pa (3)

VOl. 2 NOücno Ooa. AootTO 1990
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Where Oconespoiids to the angle lelated with the

horizontal of the &ee sur&ce. The valué of a can be

-1 £ a ¿ 1, dq)ending on the direction of the fiic-
tion forcé, the Froude nuniber, the history how we
reached this valué together with the initial condi-
tions. Rearranging temis, scaling the coordinates (z
and r) with the radius, R, oía ^lindrícal or rectan
gular container (as in the prevíous experiments), and
introducing the Fronde number, Fr, defíned in pie-
vious section, we obtain from equation 2 a dimen-
sionl^ difieiential equation for the surfece slope as:

- ífe F,r-ua
\aae = — = ——

dr 1+ fioF^r
(4)

Assuming we increase slowly the Froude number

ñom zero, there is a critical valué of the Froude

number, F* = fi, below which the surfoce does

not show any deformation. The superscrípt plus sign
in the Froude number indicates that the motion state

results for increasing Fr. As the Froude nuniber in-

creases, the critical state is obtained automatically (a

= 1) for /" >fi/F* due to the centrifogal forcé.
However, this critical state difiiises towards the

center and can be achieved also in legions where for

r^úr'k. fijF* due to micro^valanches occurring
to replace the granular material removed outwards
in the critical región. The valué of can be obtained
by using the overall mass conservation. In the non-

critical región O ¿ r ¿ ro, the surfoce remains with

the initial shape, which in this case is horizontal,

with a valué of the fiiction paiameter a-r. Theie-

fore, the valué of a jumps from to 1 at r = re and
can be given in the whole range as:

Q! =r +ií(r-rp)(l-r) (5)

Where H{Q rq)Tesents the Heaviside function.
Equation 4 with a = 1 can be integrated through the

critical región, re £ r ¿ 1, giving

(6)
^ ' fi F, \\ +ijF,rJ

Here, Ze, corresponds to the valué of z at r = r,. For

the subcritical región, OS r á re, we get z = zo= H/R.

The máximum slope of the ñee surfoce can be obtai
ned in the limit of veiy large Froude number from
equation 6, resulting:

dz

M

Overall mass conservation of granular material
assuming an incompressible médium, can be written
as:

(7)

Introducing equation 6 into equation 7, we get:

[(I +F;>.)ln(l+ +Kn)-Kl4}"«i)] =O

Equation 8 gives a relationship of the form,

For aFroude number such as fi^F* {F*^, there is
an unperturbed subcritical región, resulting Ze = zg,

with ''e(^/) deduced from equation 8. There is a
critical valué ofthe Froude number, F*^ thatmakes
the whole región to be critical, that is r^ = O, genera-

ting a peak at the center with slopes equal to ~fi.
This critical valué is obtained ñom equation 8 re
sulting a transcendental equation of the form

/(zo,0,/^) =0. An asymptotic relationship gives
F*y »3fi, for/r->0. In our case we get f;, =

1.7918 for fi = 0.53. Increasing further the Froude
number, the valué of z^ and the height of peak de-

creases vanishing the latter in the limit F*

In the limiting case o¡í F* -¥ , z^ reaches a mí
nimum valué of z^„¡^ = ^ suifece

is lepresentedby the straight Uneswith a slope of^
The surfoce profiles show a mínimum at:

r =r^ =fi/F* > te. PracUcally, the peak di-
sappears as r„ becomes of the magnitude order of

the non-dimensional partióle size, that is

F* =OijjRjd), where dcorresponds to the par
tióle diameter.

On the other hand, after reaching a máximum

valué of F*, , we decrease the Froude num

ber slowly reaching again the zero Froude number.

In this case, there are two different regions. The cri

tical conditions now occur at the center of the bin,

diSusing outwards as the Froude number, F~ de-
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creases, ""^is critical statc is rcached by micro-

avalanches produccd because the ccntrifugal forcé is
unable to support thc grains al tlic surfacc. In thc

now subcritical región, r > re, the slopc of tlie surfa

cc does not change from the valué oblaincd for the
máximum Froude number. In the critical región, the

slope of the surface can be obtained from equation 4,

bul with a valué of a = -1. Thc position of r« can be

(^tained by equating the slopcs from equation 4 as

follo%>^;

(9)

Giving a quadratic equation for te. For fínile valúes

of , we can get as a result lwo valúes of re for

a given valué of. Criticality is reachcd aulomatically

in the región rd < r < re:. However the central core

1.S \

Fr = 4
= 26.f4
= 42.S?

•i-.

ínitial prt^le

0.6 *,~t4/tS

0.0 I I •. .11...
-Í.O -0.6 -0.2 0.2

r

220 OIEHCIA EMOO SUM

0.6 Í.O

achieves also ihe crítical state due lo micro-

avalanchcs from the cntical región. Therefore, thc
crilical región goes from r = O lo r = r^ = r«j. From

equation 9 we can obtain üie Froude number as a
iunciion of re as:

In ihe límit -» oo, equation 10 can be reduced

to give reas a íunction of the actual Froude number

Figure 2 shows the valué of re as a funclion of F,'

for different valúes of . For r > Tc, the profile

is the same as obtained with the máximum Froude

number. For r < ^ the surface equation can be obtai

ned from equation 4 with a = -1, resulting:

Where can be (^tainol in the same form as before.

using the overall mass conservalion. Therefore. for

the same Froude number reachcd from both sides,

we gei in this case two different surfacc's equations

(/. e., same as found experímentally). In general, ít
terms will be infinite number of possibilities depen-

ding on the history of how we gol to that given
Froude number. showing the non-linear character of

thc problem.

On the basis of this result. we can show some sha-

pcs of the surface of piles resulting from rotation.
Assuming we that start thc motion from rest with an

initial ílat horizontal surface. wc obtain a peak at thc

ccnter with decrcasing heíght as the Froude number

íncreases. Figure 3 shows iwo dimensional projcc-

tions of surfaces generated by slowly increasing

F*. We take a valué of /r = 0.53 (ílt= 31°) in order

to compare the theory with the experiments made

with Otta\va sand. The valúes cf the chosen Froude

number wcre: F* = 4.0, where a clear central peak

is noted, F* = 26.14 and F/ = = 42.57, Fi

gure 4 shows the height of the píle's center as a

function of the Froude number. On the other hand. if

we decrease the Froude number from F^^^ =
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42.57, we get another type of solutions for the surfa-

ceequation. Figure 5 shows the solutions for F/ =

26.16, F~ = 4.0 and finally, for F/ =0, where we

get the ñnal state for the surface with a constant slo-

peM(í. = 3n.

From equation 4 we recover aiso the nc\vtonian

fluid behavior in the case of /i = O and F, * 0. the

solution that can be given in dimensionless form as:

in. Comparíson betwcen theory and experíments

A direct comparíson between previous anatysis and

experimental results is given in flgure 6, where we

show the free surface shapes for F/ = 4, F* =

26.14 and F* = 42.57. In the case of decreasing

Froude numbers wc aiso show in figure 7 a comparí

son between thcoiy and experiment for the case of

F¡' =26.14, F,~ =4 and F~ =0. In all cases pre-

sented here, there is a very good agreement between

theory and experiment, which coníirms that the pre-

sent model describes correctly the phenomenolo^' of

the experiment.

We should comment that the friction angle actua-

lly does not have an unique valué. It fluctuates wi-

thin a small range (Morales, et. al., 1993), which in

our e.xperiments was: ± 5, where 5 - 1®. For each

Froude number, the experimental results deviate a

few per cent (less than 2%) in the surface shape

profiles.

IV. Rcmarks and conclusions

The problem of the rotation of granular material on
the vertical axis, in general; is a very complex phe-
nomenon because it takes into account not oniy the

gravitational as well the cenlrifugal forcé, but also

the history of the molion through the friction forcé.
However, the history or memory effect disappcars

for continuously slow increasing or decreasing rota

tion, as the grain achieves the critical state

everywhere. In this case, from a continuum point of
view, this problem can be understood and a simple

analysis can describe correctly the molional beha

vior. Even in the case of slowly changing the Froude

number, the system shows hysteresis indicating the

•-Ó.2 -Ó.O 0.2 0.4
2b

0.6 0.8

/.5r\

0.5 4 z»=14/lS

Fr = O
- 1

= 4
- 26.14

-Lo -Ó.6 -Ó.2 0.2 0.6 1.0
r

0.54 2t=f4/IS

-0.6

F-^O

= 4 /.
= 26.14 //

/ '

-0.2 0.2 0.8 1.0
r
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Í y
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r

existence of múltiple steady-state solutions. In the

more general case of reaching a given valué of the

Froude number though any arbitrary way (rapid step

type changes), is possible to obtain any number of

steady-state solutions. Hysteresis in avalanche pro-

cesses is related to the changes in the slope near the

máximum angle and the fríctlonal and packing fac-

tors inside of piles. In the problcm descríbed in this

work the hysteresis behavior is related with thesefac-

tors but additionally the initial and boundary condi-

tions. ♦
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