On the vertical rotation
of a sand heap
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Abstract. This work is a phenomenological attempt
to predict the dynamic response of a sand heap due
{o rotation about its vertical axis. We have made
experiments and we've developed a model in order
to describe the effect of the rotation on the pile's
surface from a dimensionless force balance equation
using the Coulomb yield law. We got a very good
correspondence between the experimental patterns
and the theory, depending on the material through
the solid friction angle and we formulated a
plausible suggestion for the way in which the pile's
history is determined by dynamic (Froude number)
and material (friction coefficient) parameters.

Introduction

The study of granular media has received great
attention in the literature in the last years, due to its
related fascinating phenomena, such as dilatance
(Onoda and Liniger, 1990), arching (Edwards and
QOakeshott, 1989), segregation (Jullien, et. al., 1992;
Britgewater, ef. al, 1985) or fluid-like behavior
(Haff, 1983; Nederman, et. al., 1982) which give
origin to peculiar effects not occurring in other
aggregation states such as liquids and solids
(Wieghardt, 1975; Baxter, et. al., 1993). These latter
phenomena make difficult any theoretical descrip-
tion valid over a wide range of parameters. Even
with an ideal granular cohesionless media made up
of monodisperse rigid grains, the analysis presents
such complexity that attempts to describe its dyna-
mical regimes are of limited success (Mehta, 1992).
This paper deals with the free surface deformation
of dry, noncohesive granular material during an axi-
symmetrical vertical rotation (parallel to gravity for-
ce). This phenomenon is interesting because the
dynamical response of these materials composed of
dense collections of solid grains, are not well unders-
tood. In order to study this problem, we made a
theoretical approach using a force balance equation
which includes the Coulomb yield law and compared
both the theoretical and experimental results,
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showing a very good agreement between them. The
experiments were performed using ideal granular
material like Ottawa sand, made up of round grains
that are more or less uniformly sized. Though our
experiments were made using near two-dimensional
bins, they showed interesting facts, which deviates
from those found in newtonian fluids. We obtained
multi-valued steady state solutions in terms of the
material parameter u (the friction coefficient) and
the Froude number, F, (Landau y Lifshits, 1959;

Zierep, 1971), to be defined later. These solutions
showed strong différences in comparison with a li-
quid. In particular, the analysis gives different
steady-state solutions (hysteresis) for a given value
of the Froude number if we reach it slowly coming
up or going down. In the next section (Edwards and
QOakeshott, 1989) we describe the two-dimensional
experimental set-up and results. In Section II we
present the theoretical analysis based on the Cou-
lomb's law. Comparison of experimental and theo-
retical results are shown in Section III. Finally in
Section IV we present the final remarks and conclu-
sions.

L Experiments

In order to observe and characterize the surface
patterns during rotation, we did experiments with
sand and got the free surface profiles for different
motion states. Figure 1 illustrates a schematic fron-
tal view of the experimental set-up. Due to 3-D vi-
sualization difficulties of surfaces in circular cylin-
ders we used thin rectangular bins of plexiglass with
the following dimensions: 30 cm length (R = 15
cm), 0.4 cm width and 30 cm height. We used gra-
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nular material composed of Ottawa sand with mean
grain's size between 0.03-0.06 cm, bulk density p =
grcm", mean value of solid friction angle ¢, = 31°,
and friction coefficient 7= ¢.=0.53.

FIGURE 1. GEOME TRY OF THE SYSTEM

z

The bins were filled with granular material up to
14 cm height and rotated on the z — axis (parallel to
the gravity vector) with a slowly change on the an-
gular velocities, Q, taking care of no introducing
additional forces. The angular velocity varied from 0
to up 52.78 s™. The resulting Froude number, F,,
relating the centrifugal to gravity forces, is defined
as:

2
Fr = Qg )]

Where g is the magnitude of gravity acceleration,
Therefore, in the experiments we use a Froude num-
ber such as 0 < F, < 43, Three dimensional effects
were not observed in the thin bins (there was not any
important kind of deformation in the azimutal ¢-
direction), and therefore the heaps can be treated to
be two dimensional. The observations were made re-
cording the motion with a CCD-camera to 500 fra-
mes per second.

We found several interesting patterns as we in-
creased the Froude number, starting from zero: A
first pattern, which conserves the initial free surface,
occurs between 0 < F, < 1.36. As the Froude number
is increased further, the free surface changes gene-
rating a peak at the center. This peak finally va-
nishes as the Froude number reaches a value of
approximately F, ~ 26.14. This shape is maintained
for larger Froude numbers with increasing slopes.

Another patterns can be obtained when we reduce
slowly the Froude number from the maximum value
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reached, F, = 43. In this case, the surface shapes are
clearly different than those obtained when we in-
creased the Froude number. The final state is rea-
ched when F, = 0, showing the free surface profiles
represented by two symmetrical straight lines to an
angle of 31° from the horizontal. All shapes obtai-
ned are reproducible showing an hysteretic behavior.
For a given value of the Froude number we got diffe-
rent shapes depending if we arrive to this number
coming up or going down. Otherwise, when the ro-
tation device was not well fixed, vibrations appeared
at large Froude numbers and a hole or crater was
formed on the heap. With care, we can avoid this
unwanted phenomenon. In Section III, we present
some experimental results compared with the theory
to be developed in the next Section.

IL Theoretical analysis

A common mechanical state of a cohesionless granu-
lar material is called the quasi-static regime, where
low shear rates and high concentrations dominate.
An example of it is a sand pile whose free surface
forms a plane with a constant slope with the hori-
zontal: this one is subject to shear stress (7) and
normal stress (V) that tends to move the surface's
pile in accordance with the Coulomb yield law
(Coulomb, 1773) established two centuries ago:

| 7|= Nyla|< Nu= N tang, @

This formula expresses that the slope does not chan-
ge if the shear stress is less than the product of the
normal stress and the friction coefficient 4. When
the yield condition (equality) is reached, that is o. =
%1, the pile's surface yields, occurring a granular
flow (Sokolovskii, 1965). This situation is also ca-
lled the critical state in soil mechanics (Schofield
and Wroth, 1968). Relation 2 (Edwards and Oa-
keshott, 1989) has been used in studying the stability
of slopes (Sokolovskii, 1965; Rajchenbach, 1990),
but it also can be used here to explain the problem of
rotation of cohesionless granular piles in containers.

The criteria that supports the use of equation 2 is
the continuum point of view of granular media. In
this case we can formulate a balance of forces equa-
tion for a small element of volume with density p at
the free surface of the granular pile. Using cylindri-
cal coordinates, this equation can be written as:

p) [Q’ r cos@—-g sin0] = p[er sind + g cosB] ua ®
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ON THE VERTIOAL ROTATION OF A SAND HEAP

Where 8 corresponds to the angle related with the
horizontal of the free surface. The value of a can be
-1 € a £ 1, depending on the direction of the fric-
tion force, the Froude number, the history how we
reached this value together with the initial condi-
tions. Rearranging terms, scaling the coordinates (z
and ») with the radius, R, of a cylindrical or rectan-
gular container (as in the previous experiments), and
introducing the Froude number, F,, defined in pre-
vious section, we obtain from equation 2 a dimen-
sionless differential equation for the surface slope as:

szrya

T dr 14+ paF.r

@

Assuming we increase slowly the Froude number
from zero, there is a critical value of the Froude
number, F," = , below which the surface does
not show any deformation. The superscript plus sign
in the Froude number indicates that the motion state
results for increasing F,. As the Froude number in-
creases, the critical state is obtained automatically (o

= 1) for 72 pf/F’ due to the centrifugal force.
However, this critical state diffuses towards the
center and can be achieved also in regions where for
r.<r2 ufF’ dueto micro-avalanches occurring
to replace the granular material removed outwards
in the critical region. The value of 7. can be obtained
by using the overall mass conservation. In the non-
critical region 0 < r < r,, the surface remains with
the initial shape, which in this case is horizontal,
with a value of the friction parameter a = r. There-
fore, the value of & jumps from . to 1 at » =r. and
can be given in the whole range as:

a=r+H(r-r)1-r) ®)

Where H(E) represents the Heaviside function.
Equation 4 with a = 1 can be integrated through the
critical region, r, < r < 1, giving

- Leor)- L L

Here, z,, corresponds to the value of z at » = 7. For
the subcritical region, 0 S r < r,, we get 2= 2, = H/R.
The maximum slope of the free surface can be obtai-
ned in the limit of very large Froude number from
equation 6, resulting:

©

#r)-2
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dz
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Overall mass conservation of granular material
assuming an incompressible medium, can be written
as:

-[:[z(r) -z, ]dr =0 Q)

Introducing equation 6 into equation 7, we get:

I =(2‘—2°x1 )"’_(I_ c)l ;::I‘l (8)

[(I + l-',‘y)ln(l+ F,'y) (l + F'm)ln(l + F,'pr,)- F -r,)] =0

-

Equation 8 gives a relationship of the form,
I(z,,r; ,F,*)= 0

For a Froude number such as 2 < F," (F}; , there is

an unperturbed subcritical region, resulting z, = z,,
with ,(F,") deduced from equation 8. There is a

critical value of the Froude number, F,; that makes
the whole region to be critical, that is », = 0, genera-
ting a peak at the center with slopes equal to —.
This critical value is obtained from equation 8 re-
sulting a transcendental equation of the form
I(2,,0,F;)=0. An asymptotic relationship gives
Fy=3u fory—0. In our case we get F; =

1.7918 for g = 0.53. Increasing further the Froude
number, the value of z, and the height of peak de-

creases vanishing the latter in the limit F," — 0.
In the limiting case of F," — o, z, reaches a mi-
nimum value of 2z, =z, —]/(2;1), and the surface
is represented by the straight lines with a slope of &~
!. The surface profiles show a minimum at:
r=r,=uflF’'> r. Practically, the peak di-
sappears as »,, becomes of the magnitude order of
the non-dimensional particle size, that is
= O(yR/d), where d corresponds to the par-

ticle diameter,
On the other hand, after reaching a maximum
value of F,', F ., we decrease the Froude num-
ber slowly reaching again the zero Froude number.

In this case, there are two different regions. The cri-
tical conditions now occur at the center of the bin,

diffusing outwards as the Froude number, F,” de-

CIENCIA ERGO suM 219



FIGURE 2. CRITICAL REGION RADIUS AS A FUNCTION OF THE ACTUAL
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creases. " “is critical state is reached by micro-
avalanches produced because the centrifugal force is
unable to support the grains at the surface. In the
now subcritical region, r > r., the slope of the surfa-
ce does not change from the value obtained for the
maximum Froude number. In the critical region, the
slope of the surface can be obtained from equation 4,
but with a value of oo = -1. The position of r, can be
obtained by equating the slopes from equation 4 as
follows:

Fr+p For.—p

i )
l=uFr, l+uk_.r.

Giving a quadratic equation for r.. For finite values
of I .., we can get as a result two values of . for

a given value of. Criticality is reached automatically
in the region r,; < r < r.o. However the central core

FIGURE 3. FREE SURFACE PROFILES OBTAINED FROM THE ANALYSIS AS

THE FROUDE NUMBER INCREASES, FOR F: =4, 26.14 anD 42 .57
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achieves also the critical state due to micro-
avalanches from the critical region. Therefore, the
critical region goes from r =0 10 r = 1. = 1. From
equation 9 we can obtain the Froude number as a
function of r. as:

o Fror(1-1)-2u

A (10)
2F rPu+ rc(l - ,u’)

In the limit F°  — o, equation 10 can be reduced

to give r, as a function of the actual Froude number
as.

2

r i

- (11)
3 2}LF;_

Figure 2 shows the value of r. as a function of F

for different values of F, . For r > r, the profile

is the same as obtained with the maximum Froude
number. For r < r, the surface equation can be obtai-
ned from equation 4 with o = -1, resulting:

2(r) -z, =l(r: -r)- lf‘uf ln[ l—,uF,.r] (12)

u W F \1-uFr,
Where z. can be obtained in the same form as before,
using the overall mass conservation. Therefore, for
the same Froude number reached from both sides,
we get in this case two different surface's equations
(i. e., same as found experimentally). In general, it
terms will be infinite number of possibilities depen-
ding on the history of how we got to that given
Froude number, showing the non-linear character of
the problem.

On the basis of this result, we can show some sha-
pes of the surface of piles resulting from rotation.
Assuming we that start the motion from rest with an
initial flat horizontal surface, we obtain a peak at the
center with decreasing height as the Froude number
increases. Figure 3 shows two dimensional projec-
tions of surfaces generated by slowly increasing

F" . We take a value of u = 0.53 (¢.= 31°) in order

to compare the theory with the experiments made
with Ottawa sand. The values cf the chosen Froude

number were: F,” = 4.0, where a clear central peak

F*

r max

is noted, /" =26.14 and F" = = 42.57. Fi-

gure 4 shows the height of the pile's center as a
function of the Froude number. On the other hand, if

we decrease the Froude number from /.~ =

r max
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ON THE VERTICAL ROTATION OF A SAND HEAP

42.57, we get another type of solutions for the surfa-

ce equation. Figure 5 shows the solutions for /, =

26.16, ;" =4.0 and finally, for F,” =0, wherc we

get the final state for the surface with a constant slo-
pe u(g.=31°).

From equation 4 we recover also the newtonian
fluid behavior in the case of # = 0 and F, # 0, the
solution that can be given in dimensionless form as:

(13)

IIL. Comparison between theory and experiments

A direct comparison between previous analysis and
experimental results is given in figure 6, where we

show the free surface shapes for F° =4, F =

r

26.14 and F” = 42.57. In the case of decreasing

Froude numbers we also show in figure 7 a compari-
son between theory and experiment for the case of
F, =26.14, F7 =4 and F = 0. In all cases pre-
sented here, there is a very good agreement between
theory and experiment, which confirms that the pre-
sent model describes correctly the phenomenology of
the experiment.

We should comment that the friction angle actua-
lly does not have an unique value. It fluctuates wi-
thin a small range (Morales, et. al., 1993), which in
our experiments was: ¢.+ 8, where 8 ~ 1°. For each
Froude number, the experimental results deviate a
few per cent (less than 2%) in the surface shape
profiles.

IV. Remarks and conclusions

The problem of the rotation of granular material on
the vertical axis, in general; is a very complex phe-
nomenon because it takes into account not only the
gravitational as well the centrifugal force, but also
the history of the motion through the friction force.
However, the history or memory effect disappears
for continuously slow increasing or decreasing rota-
tion, as the grain achieves the critical state
everywhere. In this case, from a continuum point of
view, this problem can be understood and a simple
analysis can describe correctly the motional beha-
vior. Even in the case of slowly changing the Froude
number, the system shows hysteresis indicating the
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FIGURE 5. FREE SURFACE PROFILES OBTAINED FROM THE ANALYSIS AS

THE FROUDE NUMBER DECREASES, FOR Fr" =0,1, 4 AnD 26.14
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existence of multiple steady-state solutions. In the
more general case of reaching a given value of the

FIGURE 7. COMPARISON OF EXPERIMENTAL RESULTS AND THEORY FOR

DIFFERENT VALUES OF F~

Froude number though any arbitrary way (rapid step
type changes), is possible to obtain any number of
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