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We study theoretically and experimentally the wicking process in pieces of blotting paper of different shapes: rectangular and triangular

strips and square strips where radial imbibition occurs. We find that in rectangular strips the dynamics of the capillary penetration yields
the classical Washburn law while in the other cases logarithmic corrections respect to this law are obtained. Our experiments are in good

agreement with the theoretical predictions.

Keywords: Surface-tension-driven instability; flow through porous media

Estudiamos tedrica y experimentalmente el proceso de absorcién capilar de fluidos en pedazos de palpel filtro de diferente forma: tiras
rectangulares y triangulares, y tiras cuadradas donde, ocurre imbibicién radial. Encontramos que en las tiras rectangulares la dindmica de la
penetracién capilar da la ley cldsica de Washburn, mientras que en los otros casos se obtienen correcciones logaritmicas respecto a dicha ley.
nuestros experimentos dan un buen acuerdo con las predicciones tedricas.

Descriptores: Inestabilidades originadas por tension superficial; flujos en medios porosos

PACS: 47.20.Dr; 47.55.Mh

1. Introduction

Capillary penetration of liquids into fibrous materials, like
paper or fabric, is of great importance in fundamental and
applied physics [1-8]. In the first case, the theoretical and ex-
perimental studies show a complex interaction between the
liquid and the isotropic [1-6] or the anisotropic [7,8] fi-
brous matrix. In the second case, there are many processes
on these materials, such as textile and paper treatment, chro-
matography, drying ink, etc., where the knowledge of the
fluid penetration under several physical and chemical con-
ditions is critical [9,10]. Moreover, many of the main re-
suits of this phenomenon in fibrous materials, also known as
imbibition, can be extended to granular porous media, like
sand and rocks, and consequently to a very wide range of
other areas such as underground water and petroleum exploi-
tation [11-13].

From the experimental point of view, imbibition has been
mainly studied in filter or blotting papers where various me-
thods to measure this spontaneous liquid absorption have be-
en proposed. With these methods, the liquid transport in-
to this materials is monitored by physical changes, such as
weight, transmittance, visualization, etc. These methods can
provide information only on the absorption kinetics and two
types of geometries have been used to study this process: uni-
directional penetration, from a large fluid reservoir, in rectan-
gular strips and radial penetration from the finite perimeter
of a circle of radius r, into the fibrous assembly [1, 3,4]. The
results obtained from these two types of systems can be com-
pared and the main difference is a logarithmic correction in
the radial imbibition respect to the unidirectional case. Unidi-
rectional penetration of liquid into rectangular strips clearly

shows that the kinetics of the process follows the Washburn
law, which is a relation between the distance from the fluid
source to the imbibition front, y, and the elapsed time to rea-
ch this front, ¢, such that y ~ /¢ [14] and where the constant
of proportionality is a function of the properties of the ma-
terial. The radial imbibition follows, as an asymptotic limit
for small distances, the Washburn law [3, 4]. In this work we
will study the imbibition in triangular samples of paper, as
a fluid dynamics problem in a porous medium and not as an
extension of the fluid motion into parallel plates or into many
capillary tubes and our results are compared with the well
studied cases of imbibition in rectangular strips and radial
imbibition. We found that in triangular shapes logarithmic
corrections are also obtained having the Washburn law as an
asymptotic limit for small distances. Experiments with water
as the wetting fluid show a good agreement with the theoreti-
cal predictions for all the geometries here treated. This work
is divided as follows: in next section we will introduce our
theoretical approach to study the triangular geometries and
we also study the unidirectional and radial penetration. Af-
ter that, in section III we will present experimental studies
and the comparison with the theoretical predictions. Finally
in section 1V we give the main conclusions and perspectives
of this work. '

2. Theoretical treatment

Despite the complex structure of paper (see Fig. 1), the spon-
taneous and uniform penetration of a fluid into paper of any
shape, when it is horizontal, can be described with the fluid
dynamics. equations, i.e., through the Darcy equation, the
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(b)
FIGURE 1. a) Photograph showing the surface details of the blot-
ting paper used in our experiments. Note the complex structure of
this isotropic sample and b) lateral view of the blotting paper where
we can see its average thickness, D ~ 0.38 mm. Both photographs
were taken with a 10x microscope.

mass conservation equation and the Young-Laplace equation
for the capillary pressure difference at the imbibition front in
the material. Incidentally, when the fluid penetration is not
uniform (there is a complex saturation in the paper), for ins-
tance in samples of vertical paper strips, the treatment is more
complex because the permeability is a function of the satura-
tion itself [2]. This case will not be considered in this work.

The problem of the unidirectional imbibition in triangular
strips of blotting paper was previously studied experimentally
by measuring the time evolution of the imbibition front [15].
This last study clearly showed that the evolution front obeys
a different behavior than that valid for rectangular strips. Ho-
wever, no theoretical treatment was developed. Therefore, in
order to give a better understanding of this problem in the fo-
llowing lines we study the case of imbibition from the basis

L e Y sy

(a)

FIGURE 2. Schematics of the horizontal capillary penetration of a
liquid into: a) triangular piece of paper of upper angle , b) radial
penetration from the initial perimeter » = ry, and c) unidirectional
penetration in a strip of length L. In all cases. the paper has thick-
ness D and height H and the fluid penetrates as is shown in the
depicts.

of triangles. Experimentally it is noted that the imbibition
front is nearly flat (paralie! to the basis where the fluid pe-
netrates), i.e., unidirectional. This observation will be very
useful in order to build a model for the evolution of this front
and the corresponding velocity. Afterwards, we will treat the
other geometries.

2.1. Triangular strip

In order to analyze the imbibition in the triangular pieces of
paper, we consider pieces of length L, height H, thickness D
and upper angle ¢, see Fig. 2a. The characteristic size of the
pores is d and the surface tension of the fluid is o. In Fig. 2a
we also show the imbibition front which is flat and parallel to
the basis. Because the paper is very thin, the problem will be
treated in two dimensions, the gravity field will not be con-
sidered. In the first place, the capillary penetration into the
paper is due to the capillary pressure difference Ap origina-
ted by the surface tension. In this case the Young-Laplace
equation is

— =-A4p, ()

where ¢, is a dimensionless constant related to the contact
angle, 8, between the fibres of the porous materjal and the
liquid. Assuming that the steady-state flow in the paper is
unidirectional and that the filtration velocity is v, the Darcy
equation has the form

dp v :

—_—= —Cyli— 2

dy 2} d2 3 ( )
where ¢, is another dimensionless constant. The mass con-
servation is given by the relation

dy
Av = A, —=2. 3
v= A 3
where A and A are the transversal areas at heights y (within
the wet zone) and y, (just the imbibition front), respectively.
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By combining Egs. (2) and (3) we obtain that
dp _ A, dy,
dy ke Adz df

and the integration of Eq. (4) gives the total pressure drop
over the imbibed zone. This quantity is

__ keydy, [Y A,
Ar=—"pg dt/ 2

4

ucz dy, H-y,
- In{ ——=%].
(H vs) dt ( H ) )
Here we have used the ratio
A, H-y
it —_—= L ()
it A H — y L) ( )

which is a consequence of the uniform thickness of the sam-
ple and the flat imbibition front in the triangles. Now, by
using Eq. (5) in Eq. (1), we find the differential equation

cod o dy H—y,
e (H ) In (_H , (7N

this can be written in a simpler form through the dimension-
less variable, £ = (H — y,)/H. So, we have

cod d§ 2 dfz
—_— = = ——l 8
o = ey —— ®)
where we have made ¢ = (:1 /c,, clearly this quantity will de-
termined from experiments. The solution of Eq. (8), with the
boundary condition § = latt =0, is
’ 4cod :
2 -
{[ln{ —1]+1—ﬁ7t—1', (9)

where T = t/(1.H? /4cad) is the dimensionless time.

For small dimensionless heights we assume that { =1+ —¢,

where € =y, / H, and by using In(1—g) = —e—(1/2)¢" —O(e"),
we obtain
s 2cod
2= 10
pH?” (19
or
g2 = 2%, an
u

This last relation is the well known Washburn law [14], and
is valid for imbibition in strips of homogeneous porous me-
dia with constant transversal area. So, at the initial stage of
the imbibition the front obeys the same behavior than that in
strips with constant transversal area (as will be illustrated la-
ter on). Plots of the Washburn law and of Eq. (8), for several
triangles (a’s), are shown in Fig. 3a. In this case the most im-
portant result, which can be seen in the curves corresponding
to the front evolution of triangles is the smooth change in
slope (change in the front velocity), at a certain time (or at a
certain height). In Fig. 3b we have plotted the front velocities
(curves) for the cases here considered. There, we note easily

A. MEDINA, C. PEREZ-ROSALES, A. PINEDA, AND F.J. HIGUERA 539

12 1

—»—linear
- |—@—triangle 40 degs
—a&— triangle 60 degs

- -A- -triangle 70 degs
—eo—radial

——— Muller et al (1951)

8 v —

0 500 1000 1500 2000 2500
s)

(a)

500 1000 1500 2000 2500

% finear
—o— triangle 40 degs ;
— o -friangle 60 degs |’
- -a- -triangle 70 degs

+— radial
— - - - Muller et al (1951)

01 ..

dys/dt (cm/s)

001

0.001
t(s)
(b)

FIGURE 3. a) Evolution of the imbibition front as a function of
time for: triangular shapes with angles « = 40° (O), 60° ()
and 70° (A), for radial imbibition with r; = 1.5 ¢m () and
for unidirectional imbibition in rectangular strips with L =
and 10 cm and H = 10 cm (x), b) semilog plot of the velocity
front, dy, /dt, as a time function for the several geometries consi-
dered in a).

the increase of the front velocity (dy,/dt) in the triangles.
The evaluation of the time where the increase starts, t*, can
be obtained from Eq. (9). This time is

_ 22
w1 3/e (12)
j{lcad‘
uH?
and the height where this increase occurs is given by

Y 1 2

L=l 13

H e 3 (13

To our knowledge, this result has not been predicted for ra-
dial imbibition or imbibition in rectangular strips and it is a
consequence of the triangular shape of the sample.
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2.2. Radial imbibition

In this case, the imbibition starts from a finite radius,
r = 1r,(t = 0), and after the imbibition fronts are concentric
circles of radius r(t) (Fig. 2b). The fundamental equations
are the same than those in the previous case and we will only
change the areas ratio given by Eq. (6) in the previous subsec-
tion. Because the imbibition front, at the distance 7, has the
area A, = 277 D we have now that A /A = 7 /r, where
A= 27D is an area in the wet zone such that 7y <7 < 7.
Therefore, in this case, the Darcy equation yields for the total
pressure drop

pey dr, [T A, ey T, dr,
Ap= 227 —Zdr =-==r,In2-— (14
P=ETR / i e (9
Introducing this result in the Eq. (1) we obtain
cod T (15)
U org dt

and solving this differential equation we obtain the imbibition
front which, as a time function, obeys the relation

2 2
) " deod
To Ty 1Ty

where 7' is the dimensionless time defined as
t

pry

4cod

(16)

=

Moreover, for small lengths we assume that r /ry = 1+ 6
where 4 is a dimensionless distance measured from r = 1.
Therefore, by using In(1 + €) = € — (1/2)e? + O(e3), we
obtain for small dimensionless distances that
, 4cod
6 = —t 17
St (17
which corresponds once again to the Washburn law. The plots
of the imbibition front and its velocity are shown in Fig. 3.

2.3. Linear imbibition

In Fig. 2¢ we show the schematics of the unidirectional im-
bibition in rectangular strips of blotting paper. Once again,
the governing equations are the same as above and we
again change the areas ratio which in this case is cons-
tant, 4_/4 = 1. Then, the Darcy and mass conservation
equations yield the total pressure drop

ey dry Y
Ap=-—-"—= dy =
P &2 dt /0 Y d4?

_hey 4y,
ys dt *

(18)

This result leads, as above, to the differential equation

cod dy,
—_— =1 —_,
" Ysat

19
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and, finally, by solving this differential equation, we find (ta-
king into account that y, = 0 at £ = () ), the Washburn law
3 _ 2cod

I8 ‘3
H

(20

this curve is shown in Fig. 3. In the next section we present
some experiments in order to prove our theoretical results for
all these geometries.

3. Experiments

Imbibition experiments in horizontal pieces of blotting pa-
per, of mean thickness D = (.38 mm, have been made in
order to compare with the theoretical results for three geo-
metries previously considered. In the first place, the triangu-
lar pieces of paper were cut so that the basis of the trian-
gles always has L = 10 cm, its angles were a = 40°, 60°
and 70° and its corresponding heights were H = 13.74, 8.66
and 7.14 cm. Rectangular pieces were L = 5 and 10 cm in
length and H = 10 cm in height. We have folded the basis of
the triangles and rectangles as is depicted in Fig. 2a and 2c to
induce the water filtration from a big container. Finally, the
radial imbibition was carried out in paper with L = 30 cm
and initial radius 7, = 1.5 cm. In the radial imbibition we
have brought the water to the perimeter of the horizontal sam-
ple of paper by using also a circular piece of the same blot-
ting paper which touched the water reservoir and the peri-
meter of the paper (Fig. 2b). In all cases we used deionized
water (at ambient temperature 24°C) which has a surface ten-
sion o ~ 72 gr/s?, density p = 1 gr/cm® and dynamic visco-

- sity . = 0.92 cp. The front evolution (zone between the dry

and wet zones) was recorded with a CCD video camera. After
that, w ¢ have digitized the filim, frame by frame, and we have
measured the time evolution of the front, each 1/30 s, with a
spatial resolution of 4-1 mm. Typical duration of experiments
in these samples was from 500 s up to 2500 s.

At least four experiments were performed for each geo-
metry (and for each angle ). In Fig. 3 we show the ex-
perimental results (symbols) for each geometry. The ba-
sic experiment was the imbibition in the rectangular strips
(where the experimental results are the same for L =5
or L =10cm) because in this case we can evaluate
easily the factor 4 = 2cod/p by fitting Eq. (20) to the
experimental points. So, the quantity A takes the va-
lue A = 2.71 x 10~% cm?/s. In this quantity we do not know
a priori the ¢ffective value of 2cd which, as aforementio-
ned, is related to the effective angle of wetting (6) betwe-
en the fibres and the liquid. In the rectangular strips our
experiments indicate that 2cd = 0.003 mm. By the way, it
is generally accepted that 2¢d ~ cos 8d and that in blotting
paper 6 ~ 87° [4,6, 8], therefore d will be d ~ 0.05 mm.
Looking at Fig. 1a we note that it is a very good represen-
tative value for the pore size. Afterwards, we have estima-
ted that B, = 4cod/(pH?), for the triangle with angle «,
and C = 4cod/(3prd), for radial imbibition. We have obtai-
ned these values through the experiments and by using the
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value of 2cd obtained in the experiments of the rectangular
strips. The obtained values for triangles by using both met-
hods are very similar between them (Bg. =2.88x 107451,
Bgpo =7.24x107*s7! and Byge = 1.06 x 1073 s~ 1) but C,
in the radial imbibition, is underestimated (using the value
of 2ed = 0.003 mm) by an order of 2.5 times. So, the best
value was C' = 6.43 x 102 s~1. This difference may be ori-
ginated by the complex interaction between the fibres and the
fluid where, for instance, the wetting angle changes as a func-
tion of the filtration velocity [5]. In Fig. 3a we show all the
theoretical curves for the imbibition fronts which fitted the
experimental data and yield the constants previously discus-
sed. The agreement is very good. There we also have included
the experimental data, for a triangle (continuous curve with-
out symbols), from Muller er al. [15]. Likewise, in Fig. 3b
we show the velocity fronts as a time function for all cases
here treated including that by Muller ez al. (again, the conti-
nuous curve without symbols). The main resuit in this case is
the appreciable increase in the velocity just at y?/H ~ 2/3
for all the triangular shapes. So, the experiments give a clear
confirmation of our model in relation to the triangular geo-
metry.

4. Conclusions

[n this work we have analyzed the spontaneous imbibition
in pieces of paper with several simple shapes. We have found
that the theoretical predictions are in good agreement with the
experimental measurements. Experiments using water were
made in order to determine the free parameters of the mo-
del. A new result was the prediction of the increase of the
front velocities in the triangular geometries which was pro-
ved through the experiments. It is also important to note that
similar equations for the evolution of the imbibition fronts
were obtained for cases of imbibition in triangles and radial
imbibition. More work, specially that related to more com-
plicated geometries, to spontaneous penetration from several
boundaries and to the use of three-dimensional samples of
other porous media is in progress.
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