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Granular media, like sand and powders, are very complex in their dynamics. Due to it there is not yet a
set of equations valid over a wide range of several motion regimes. In this work we present a simple and
unified analytical approach which takes into account the Coulomb’s yield criterion (CYC) for the
description of the free surface deformation in non cohesive granular media and the rupture patterns in
cohesive granular media. Through the discussion of some examples and its comparison with experiments
we show the usefulness and necessity of this criterion in this kind of problems.
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1. Introduction

Recently, granular matter has received special attention
from the research community (see, for instance, the reviews
in refs. 1–5). The diverse set of behaviors of granular
materials in nature and in industry have made difficult its
description. So, several of the main factors which make the
study of granular material an interesting subject of research,
are among others: i) The lack of general equations of motion
and constitutive relations valid over a wide range of flow
regimes, and ii) the existence of unique phenomena that
characterize these materials, such as segregation (the spatial
separation of the material in zones of different grain sizes)
(see, for instance, refs. 6 and 7), dilatance (increase in the
occupied volume by the granular medium by compres-
sion),8,9) arching (which causes independence of the
hydrostatic pressure on the height in vessels enough filled
with granular material),5,10) etc.

Other phenomenon not very well understood which
appears very commonly in these materials is surface
fluidization.11–14) Qualitatively, in a heap of non cohesive
granular material, the most simple case of fluidization can be
developed on its free surface under the gravity action. The
start of this continuous distortion of the surface (yield) is
approximately governed by the Coulomb’s yield criterion
(CYC)15–19) and occurs when the slope of the heap reaches a
maximum value (the angle of internal friction �c) at which
the pile’s surface yields, producing a granular flow or
avalanche. In relation with this flow a general behavior
appears: When the angle of internal friction is reached,
slowly, the resulting flow is slow and slightly dissipative.
However, a more rapid and strongly dissipative flow can be
produced when this angle is reached rapidly; both facts will
be very much exploited later. In this yield limit, named the
plastic limit, the free surface and the overall material can be
changed. The CYC also may be reached in systems under
external forces and the motion equation for these systems
gives interesting results. Similarly, the fracture phenomenon
in cohesive granular materials can be described by the CYC.
We will show that such a phenomenon can be useful, for
instance, in order to evaluate material properties such as the
cohesion level of a given sample.

Our goal in this work is to study the granular gravity flow
on a free surface and the rupture process from a macroscopic

or continuum point of view. This approach has strong
limitations in the study of granular media,4,5) but in the
(steady) problems here treated it has been very useful and
precise. A direct comparison with experimental results, if
these exist, will be made in order to show also the limitations
of this approach. So, this paper is structured as follows. In §2
we describe and model the main granular flow regimes, the
balance of forces equation for the steady-state, fully dynamic
regime is derived through a micromechanical approach for
the dissipative stress term and directly the balance of forces
equation is obtained for the quasi-static regime. In §3 we
present some analytical solutions of the balance equations
for the surface granular flow induced by gravity and other
external forces; we treat the rapid granular flow on the free
surface originated during the rotation of a cylinder about its
horizontal axis. In case of quasi-static regime we present the
problems, respectively, of the surface’s shape in a rotating
thin rectangular bin and of the free surface deformation
under an rectilinear uniform acceleration. In §4 we treat the
convenience and usefulness of an universal description for
the fracture patterns in cohesive granular media under
axisymmetrical rotation of a sample of cylindrical shape.20)

Comparison with experimental data (obtained for a xero-
graphic developer)21) let us collapse, when appropriately
normalized, into one universal curve both limits of high and
low cohesion. This fact clearly simplifies the physical
description of this phenomenon. Finally, in §5 we discuss the
advantages and limitations of the continuum models based
on the CYC and we present the conclusions of this work.

2. Fully Dynamic and Quasi-Static Granular Flow

From a continuum point of view, there are at least two
regimes for the granular flow:11,12) a) a rapid flow regime,
called by Bagnold the fully dynamic or fluidlike grain-inertia
regime, where high shear rates dominate, the interstitial fluid
plays a minor role, and moderate packing factors or
concentrations are of importance, and b) a slow flow regime,
called also by Bagnold the quasi-static or rate-independent
plastic regime, with vanishing shear rates and high packing
factors.

Our starting point in discussing the rapid granular flow
regime, is the formulation of a micromechanical steady-state
model to justify the quadratic form of the dissipative term in
the stress balance equation. Such model is based on the
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assumption that the material is constituted by rigid,
monodisperse grains which form adjacent thick frictional
layers (see Fig. 1). Each layer, at an angle � respect to the
horizontal (� > �c), contain grains whose size and nearest-
neighbor distance are roughly comparable, but coordinates
and velocities are assumed to be continuous. The gradient of
the velocity v is supposed to be in the z-direction
perpendicular to these layers, so that on the average the
upper layer moves respect to the lower layer with relative
velocity �v. This not meant to imply that the motion
necessarily occurs in these ordered assemblies, but is
intended to focus attention on the difference in the mean
velocities of the neighboring grains.

The more realistic aspects of the grain motion, like
packing (different grain concentrations), collision conditions
and grain rotation will be included through a proportionality
factor whose form can be justified by using dimensional
analysis. From the derived equation of motion, the force
balance equation for the slow flow regime can be obtained
just by making the shear rate tend to zero.

For the fully dynamic regime, an elementary approach
based on Coulomb’s balance of stress available for statics, to
which will be add a dissipation term due to interparticle
collisions has been recently proposed. So, the mechanism for
the dissipative stress generation incorporate the non-
Brownian particle motion during the rapid non-cohesive
flow which has a momentum loss at each collision and a
collision rate proportional to rv, where v is the average
grain velocity, then the shear stress varies as � � ðrvÞ2. It
can be understand, in accordance with Bagnold as follows:
When grain collisions occur between two adjacent layers, an
average net momentum proportional to �v in the �r-
direction (direction of flow) is transferred. Since the
collision rate (the inverse of the collision time
�z=�v � @z=@v) is proportional to @v=@z, the shear stress
� exerted by the upper layer, on the lower layer, in the �r-
direction, is � � �vð@v=@zÞ=ð�zÞ2. Considering, as afore-
mentioned, more realistic aspects of the grain motion, the
shear stress can be put in the form

� ¼ �
�
rv

�2
; ð1Þ

with � ¼ a cos 	
p�d
2hð�Þ, where ��1 is called the dilatance

and its inverse, � ¼ d=s, is the linear concentration. In
accordance with Fig. 1, d is the grain diameter, s is the mean
separation between grains along the flow direction �r,

s ¼ bd � d, 
p is the grain density, hð�Þ is an unknown
function which takes in to account the concentration, 	

corresponds to the angle whose tangent is the ratio of the
tangential to the normal component of the stresses, and a is a
constant. If the spheres are not perfectly matched or if the
shearing were to take place along parallel curved surfaces,
we might expect general shearing to be possible at some
value of �. For lower values of � the grains should pass one
another with progressively greater freedom.

The principal result of Bagnold’s model, outlined above,
can be derived from a more simple reasoning. We propose a
steady-state model in which the dissipative force originates
from the interaction between single grains, due to their
relative velocity. When the static friction force has been
overcome, the system begins to flow. Due to high shear
rates, each grain is mainly affected by the adjacent grain
layers through a force which is quadratic in the mean relative
velocity.

This approximation can be justified by considering the
motion of a single grain with relative velocity vr on a grain
layer at the angle � & �c. In steady granular flow, the
relative mean velocity is constant. This can occur when the
change in potential energy, along an elementary path �r ¼ d

(defined as the distance between two successive collisions or
between neighboring beads), is just the energy lost in
inelastic collisions and by friction, given as�

Ep

�
� dmpg sin � ¼

"

2
mpv

2
r þ d�mpg cos �: ð2Þ

Here mp is the grain mass, " is the collision coefficient, g
is the gravity acceleration and � ¼ tan �c corresponds to the
material parameter called the coefficient of friction. In the
last term of this equation we have used the CYC15) which
states for a non cohesive granular medium that the frictional
forces f and the normal forces N are related by the form
j f j 
 N� ¼ N tan�c. When the equality is reached, the
grain starts the motion and a flow occurs. By dividing eq. (2)
by d, we obtain the force balance equation in the �r-
direction on a single grain as

�
"

2d
v2r þ gðsin � � � cos �Þ ¼ 0: ð3Þ

This model predicts very well the observed mean velocity in
experiments.22)

In order to obtain the equation of motion for the granular
flow on the free surface on the basis of the above model, we
should consider the existence of several adjacent grain
layers. In accordance with Fig. 1, the grains in the upper
layer have an average velocity v1, the grains in the
intermediate layer have an average velocity v2 and, those
in the third layer have an average velocity v3. Experimental
evidence also shows that the average velocity of grains in the
deep layers along the downward normal tend rapidly to zero.

Under the action of gravity, two frictional forces act on
each grain; One is static (according to the CYC, proportional
to the normal force), while the other is of a dynamic nature.
We now pay attention to the dynamic process, where grain
motion is such that the frictional forces between the particle
which have an average velocity v2 and the others gives a
resultant force which can expressed in terms of Taylor’s
series around z ¼ z2, where z is the normal coordinate and z2
is the corresponding of the grain with velocity v2. z2 þ d is

Fig. 1. Simplified model of the grains motion during the rapid granular

flow, at the angle �. The separation between grains along the r axis is

s ¼ bd � d, where d is the grain diameter.
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the coordinate of the grain with velocity v1 and z2 � d is the
coordinate of the grain with velocity v3. Assuming a
continuous variation of the average velocity in the
coordinates, expanding and redefining v2 ¼ vr, we find that
v2�1 ¼ vr � ð@vr=@zÞz2d. This series can be truncated only
for small values of the ratio of the particle size to the
thickness of the granular flow, d=D � 1.

The resultant force acting on the intermediate grain can be
then given by

F¼k
�
ðv3 � v2Þ2 � ðv2 � v1Þ2

�
� 2k�� 0d3¼kd3

@

@z

�
@vr

@z

�2

;

ð4Þ
where k is a factor taking into account the collisions nature,
as later on will be shown, � ¼ ð@vr=@zÞ is the shear rate and
� 0 ¼ ð@2vr=@z2Þ. The shear stress is then given by

� ¼ k

�
@vr

@z

�2

: ð5Þ

Close to the surface at the angle �, where fluidization has
begun, the one grain analysis can be extended to an
intermediate material element of bulk density 
. In this last
case, comparing the eq. (5) with eq. (1) we found that k ¼ �

and, therefore, the stress balance equation that includes both
the static stresses through the CYC and the dissipative
dynamic friction, is

�

�
@vr

@z

�2

�
gzðsin � � � cos �Þ ¼ 0; ð6Þ

The corresponding force balance equation is then

�
@

@z

�
@vr

@z

�2

�
gðsin � � � cos �Þ ¼ 0; ð7Þ

which is the generalized form of eq. (3) and agrees, for
example, with the model used to describe the rapid granular
flow inside rotating horizontal cylinders.23) Like other
continuum theories another way to find the form of � is
through experiments. To our knowledge this has not been
made.

In the quasi-static regime, i.e., when slow flow is
occurring, the shear rate vanishes and high packing factors
are dominant.10–13) This case corresponds to the plastic
behavior of a frictional Coulomb material of the kind that
has been studied extensively in the context of soil
mechanics.16,17) Particles can stick together, roll, or maintain
sliding contact with one another for extended periods and
deformation inertial forces in the bulk are transmitted from
one region to another through a network of contact forces.
During the initial flow, granular materials can experience an
increase or decrease in the volume depending on the initial
state of the material;10,16) however with continuous defor-
mation, the material tends towards an asymptotic state with
constant volume.

Finally, the force balance equation for slow flow regime
can be obtained just by making the shear rate tend to zero in
eq. (7), it yields


gðsin � � � cos �Þ ¼ FB; ð8Þ

where FB is the steady state body force, per unit volume,
acting on the granular surface. This last force has two terms:
the driving and its corresponding friction forces.

3. Some Analytical Solutions for Surface Flow

We present some analytical solutions for eqs. (7) and (8),
by studying the rapid flow regime (continuous flow) in a
horizontal rotating cylinder and the slow flow regime during
the vertical rotation of a bin and during the uniform
acceleration of a box of sand. All the solutions to these
problems give closed form expressions, which are in good
agreement with experimental observations.

3.1 Flow in a cylinder with horizontal rotation
The rotation of a cylinder about its horizontal axis, half

filled with sand, has been studied due its related phenomena
of discrete and continuous flow regimes.23) The discrete
regime occurs for low angular velocities while the
continuous regime, Fig. 2, occur when the angular velocity
� is larger than two critical values �1 or �2, depending on if
these values of the angular velocity were reached coming up
or going down. In particular, in the continuous flow regime,
a rapid granular flow takes place on the surface which can be
characterized experimentally by the current, J which seems
to obey the law

J �
�
� � �c

�m
; ð9Þ

where m ¼ 0:5� 0:1 and � > �c. eq. (9) implies a direct
relation between the surface current and the slope, not
depending on the detailed geometry of the container.
However, a more detailed expression can be obtained
through a continuum model using directly the eq. (7). In
fact, taking the z axis normal to the flow and oriented, unlike
Fig. 1, downward, we found a solution of the eq. (7) in terms
of a limited expansion, near � ¼ �c of the form

vðzÞ ¼
2

3

�

gh3

�
cos�c

�1
2
�
1�

�
z

h

�3
2
�
ð� � �cÞ

1
2 ; ð10Þ

where h is the thickness of the granular flow. The current J is
given by

J ¼
2

5

�

gh5

�
cos�c

�1
2

ð� � �cÞ
1
2 ; ð11Þ

which agrees with the experimental power law (9) and also,
does not depend on the geometry.

Fig. 2. Schematic view of the half-filled horizontal rotating cylinder. � is

the angular velocity, g is the gravity acceleration and R is the cylinder’s

radius.
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3.2 Free surface deformation of sand in a bin under
vertical rotation

The complete history of the free surface deformation of a
non cohesive granular media in a thin rectangular bin or a
cylinder (Fig. 3), rotating with angular velocity � about its
axis, can be studied experimentally by using eq. (8) because
in this case the surface flow is slow.24) Using the coordinates
r and z for the horizontal and vertical directions [Fig. 3(a)],
respectively, we find that the force balance equation of a
small element of volume at the free surface of the granular
pile, eq. (8), can be written as


ð�2r cos � � g sin �Þ ¼ 
ð�2r sin � þ g cos �Þ��: ð12Þ

The value of � can be �1 
 � 
 1, depending on the
direction of the friction force, the Froude number (a function
of the angular velocity �), and the history of how this value
is reach together with the initial conditions.

Rearranging terms, scaling the coordinates (z and r) with
the length L of the rectangular container and introducing the
Froude number Fr ¼ �2L=g, eq. (12) transforms to the
following dimensionless form

tan � ¼
dz

dr
¼

Frr � ��

1þ ��Frr
: ð13Þ

Assuming we slowly increase the Froude number from
zero, there is a critical value of the Froude number, Fþ

r ¼ �,
below which the surface does not show any deformation; the
superscript plus sign in the Froude number indicates that the
state of motion results from increasing Fr, while a super-
script minus sign that the state of motion results from
decreasing Fr. The solution of eq. (13) for increasing Froude
number, is

zðrÞ � zc ¼
1

�

�
r � rc

�
�

1þ �2

�2Fr

ln

�
1þ �Frr

1þ �Frrc

�
; ð14Þ

where 1 � r � rc and corresponds to a critical region with a
value of � ¼ 1. Equation (14) gives the resulting logarithmic
surface profile for the critical region.

In the case of decreasing Froude number, we can obtain
from eq. (13) with � ¼ �1, the solution

zðrÞ � zc ¼
1

�

�
rc � r

�
�

1þ �2

�2F�
r

ln

�
1� �F�

r r

1� �F�
r rc

�
; ð15Þ

where 0 
 r 
 rc is now the critical region. Equation (15)
will contain the dependence on the maximum Froude
number Fþ

rmax reached during rotation, in the form

F�
r ¼

Fþ
rmaxrcð1� �2Þ � 2�

2Fþ
rmaxr

2
c�þ rcð1� �2Þ

; ð16Þ

where zc can be obtained in both cases using the overall
mass conservation. Therefore, for the same value of the
Froude number we obtain in this case two different surface
equations (i.e., same as found experimentally.24) In general,
there will be an infinite number of possibilities, depending
on the history of how we arrives to a given Froude number,
showing the strong non-linear character of the problem.

From eq. (13) we recover also the newtonian fluid
behavior in the case of � ¼ 0, the solution of which can
be given in dimensionless form as25)

z� z0 ¼
Fr

2
r2: ð17Þ

On the basis of the previous analysis, we can show some
shapes of the surface piles resulting from rotation. Assuming
we start the motion from rest with an initial flat horizontal
surface, we obtain a peak at the center with decreasing
height as the Froude number increases. Figure 4 shows two-
dimensional projections of the surfaces generated by slowly
increasing Fþ

r . The lines show the theoretical results while
the symbols represent experimental data. Experiments were
made using thin rectangular bins with the following
dimensions: 30 cm length (L ¼ 15 cm), 0.4 cm width and
30 cm height, the bins were filled with Ottawa sand
(� ¼ tan �c ¼ tan 28� ¼ 0:53) up to H ¼ 14 cm and the
Froude number was varied from 0 up to 52:78. We also
assumed a value of � ¼ 0:53 in order to compare the theory
with experiments. The values of the chosen Froude number
were: Fþ

r ¼ 4:0, where a clear central peak is noted, Fþ
r ¼

26:14 and Fþ
r ¼ 42:57.

On the other hand, if we decrease the Froude number from
Fþ
rmax ¼ 52:78, we obtain another type of solutions for

F�
r ¼ 26:14, F�

r ¼ 4:0 and finally F�
r ¼ 0, where we obtain

the final state for the surface as a line with constant slope �
(�c ¼ 28�) (see Fig. 5). In all cases presented here, there is a
good agreement between theory and experiment, which
confirms that the present model describes correctly the
phenomenology of the experiment. The experimental values
of the surface profiles are found to be slightly below the

Fig. 3. Schematic view of the free surface deformation of a granular
material within (a) a thin rectangular bin and (b) a cylinder. In both cases

the systems rotate around its symmetry axis with angular velocity � and

under the gravity acceleration g.

Fig. 4. Free surface profiles obtained from the analysis (lines) and from

experiments (symbols) as the Froude number increases, for Fþ
r ¼ 4, 26.14

and 42.57.
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theoretical ones. We think this is due to the compressibility
of the granular material not considered in the analysis.

We should comment that the friction angle actually does
not have unique value. It fluctuates within a small range,
which in our experiments was �c � �, where � � 1�. For
each Froude number, the experimental results deviate a few
per cent (less than 2%) from the predicted surface shape
profiles.

The free surface deformation in three-dimensional
systems (spinning bucket of sand) has been studied
theoretical and experimentally.27) Similar expressions to
eqs. (12)–(14) and (17) were obtained in this case. A good
experimental agreement was also noted. More recently, the
theoretical approach named the BCRE (Bouchad, Cates,
Ravi and Edwards) model26) also has been applied to
understand the free surface deformation of a granular
sample. In this case the system was prepared with initial
slope at the angle � ’ �c, and their evolution was studied
under abrupt changes in the angular velocity, i.e., unsteady
motion.28) However, to our knowledge this model only is
useful when the slope is very near to �c, i.e., only in cases
where there are very small deviations respect to the
metastable state. Moreover, quantitative comparison with
experiments is difficult.

3.3 Free surface deformation of sand in a box under
uniform linear acceleration

As other example of the surface’s deformation of
cohesionless granular material we analyze the free surface
evolution of a system under uniform linear acceleration.
Like above, the slow flow during linear acceleration of dry
granular material within a thin box can be studied by using
the balance of force equation and the CYC.29) In Fig. 6 we
show the geometry of the system where H is the initial
height and a� is the magnitude of the acceleration of the box
respect to the inertial system fixed to the floor. Since the
point of view of an observer in the (x; y) system fixed to the
box there exit an acceleration a� in opposite direction which
deforms the surface. So the balance of forces equation [eq.
(8)] at the free surface is


ða� cos � � g sin �Þ ¼ 
ða� sin � þ g cos �Þ��; ð18Þ

where � corresponds to the angle related to the horizontal of
the free surface. Rearranging terms, scaling the coordinates

with the half-length, L, of the box and introducing the
Froude number a ¼ a�=g, we obtain the dimensionless
differential equation

tan � ¼
dy

dx
¼

a� ��

1þ ��a
: ð19Þ

We found that there is a critical value of the dimensionless
acceleration a ¼ � below which the surface does not show
any deformation. The solution of eq. (19) for increasing
values of the dimensionless acceleration (� ¼ 1), yields

y ¼
a� �

1þ �a
xþ

H

L
; ð20Þ

where we have used the overall mass conservation of
granular material. So in a thin box the surface profiles are
straight lines with slope ða� �Þ=ð1þ �aÞ and at the center
always pass with the initial height. Experiments with Ottawa
sand (� ¼ 0:53) let us find a excellent agreement between
the theoretical and experimental profiles. Note that like as in
a fluid,25) if � ¼ 0, the surface profile from eq. (19) is
obtained in the form

y ¼ axþ
H

L
: ð21Þ

When the dry granular material is confined in accelerated
containers, for example during the transportation of grains,
the knowledge of the average forces on the walls of these
containers may be useful for example in structural design.
This problem was solved analytically in case when there is
not a free surface deformation (a 
 �).30) The main result in
this case was that the forces change as a nonlinear function
of the acceleration, a.

4. Fracture in a Dry, Cohesive Granular Medium

The fracture phenomenon has a critical importance in
order to optimize some technological applications, such as
transport of xerographic powders.21,31) Moreover, phenom-
ena in cohesive materials under quasistatic deformation

Fig. 5. Free surface profiles obtained from the analysis (lines) and from
experiments (symbols) as the Froude number increases, for F�

r ¼ 0, 4 and

26.14.

Fig. 6. Schematic view of the free surface of the granular material under
horizontal acceleration. The initial height is H, 2L is the length of the box

and g is the gravity acceleration.
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should be treated, in general, at two levels of description:
First. —The detailed microstructure and the mechanical
(surface tension) and electrostatic (Van der Waals) forces of
interaction between grains are important and Second.—
These microscopic forces must be included into a balance of
force equation through the values of some phenomenological
coefficients. The coefficients could be the cohesion and
internal friction of the material and the adhesion (between
the substrate and the cohesive granular material). In order to
understand the physics of the fracture mechanism in a
macroscopic sample of cohesive granular material, we will
use this last approach.

In next subsection we present an universal description for
the fracture patterns in cohesive granular media under
axisymmetrical rotation and gravity action of a sample of
cylindrical shape.20) Comparison with experimental data is
also presented in order to validate our approach. So, we
nondimensionalize the continuum model presented by
Genovese et al.,21) which let us collapse data into a universal
curve, when appropriately normalized, simplifying the
physical description of this phenomenon. In this way the
experimental data, obtained in21) for a xerographic devel-
oper, fit into a single universal curve for both limits of
medium and low cohesion

4.1 Universal theory and comparison with experiments
In order to have a direct comparison with experiments

where fracture occur, recently has been found experimental
evidence of rupture in segments of dry cohesive powders due
to tensile load originated during axisymmetrical rota-
tion.21,31) In these experiments cylindrical cells of xero-
graphic powders, mounted on a horizontal disc, were rotated
under the gravity acceleration and fracture patterns such as
the one showed in Fig. 7 were obtained. The fracture
patterns were characterized through the critical value of the
angular velocity, �, to produce a fracture in a specimen of
radius R, for a series of these xerographic powders having
several levels of cohesion. In this work21) an analysis of this
process was made, by using a continuum approach.
However, the theoretical analysis for medium and low
cohesion can be simplified and generalized by using an
asymptotic analysis. In order to do it we will assume, such as
in ref. 21, that the fracture occurs for a cylinder of (small)

height h with an angle of fracture 2�, bulk density 
,
cohesion coefficient �t, internal friction � and adhesion
coefficient (between the substrate and the powder) �w. Here,
we will assume that the fracture process occurs along a
vertical plane as shown in Fig. 7. This is justified because it
occurs very frequently in a long series of experiments.32)

However, other fracture shapes should be formed less
frequently.32)

The fracture phenomenon was modeled using the CYC. In
this last case the CYC gives a relation between the tangential
forces along the fracture plane �, the normal forces to the
fracture plane (created during the fracture) N and the
cohesive forces C between the segment and the cylinder. In
the yield limit, the CYC given by j�j 
 �N þ C produces
after a spatial averaging of the forces acting on the segment,
the limiting form21)


�2RhAc ¼ �
	

gAbhþ �wAb



þ �tAl; ð22Þ

where Ac is a function represented by

Acð�Þ ¼ 2R2 cos3 �

Z �

0

tan � sin �

cos3 �
d� ¼

2

3
R2 sin3 �; ð23Þ

The left hand side of eq. (22) corresponds to the centrifugal
force on the fractured slice acting in direction normal to the
fracture plane. The first term on the right hand side is the
adhesion and friction forces, while the second one is due to
the cohesion force. Ab and Al are the contact area of the
fractured slice with the substrate and the area of the fracture
plane, respectively, and are given by

Ab ¼ R2

�
��

sin 2�

2

�
and Al ¼ 2Rh sin�: ð24Þ

The nondimensional form of eq. (22) can be written as

H ¼ Kf ð�Þ þ gð�Þ; ð25Þ

where

H ¼

gR

�t
Fr with Fr ¼

�2R

g
: ð26Þ

In eq. (25) we have assumed that � 6¼0. Fr is, as in the
previous section, the Froude number and the dimensionless
parameter K has the form

K ¼

gR

�t
�

�
1þ

�w


gh

�
¼


gR

�t
�0: ð27Þ

The effective coefficient of friction �0 has the form

�0 ¼ �

�
1þ

�w


gh

�
: ð28Þ

We note easily in eq. (25) that the low cohesion limit
�t ¼ 0 is singular i.e., K and H, diverge in this limit. The
functions f ð�Þ and gð�Þ are given by

f ð�Þ ¼
3

2

�� sin 2�
2

sin3 �
and gð�Þ ¼

3

sin2 �
ð29Þ

In the asymptotic limit of high cohesion (�t ! 1), i.e.,
K � 1 (� ! �=2), it can be easily shown that f ð�Þ � 3�=4,
gð�Þ � 3, and therefore

H �
3�

4
K þ 3 for K ! 0: ð30Þ

Similarly, in the limit of low cohesion (�t ! 0), i.e., K �

Fig. 7. Schematic illustration of the fracture and the separated slice in a
cohesive granular medium under axisymmetrical rotation of magnitude �

and gravity acceleration g. The slice has a fracture plane of area Al and

the area of this slice in contact with the substrate is denoted by Ab.
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1 (� ! 0), we obtain

f ð�Þ � 1þ 0:3�2 þ 0:607�4 and gð�Þ �
3

�2
þ 1þ Oð�2Þ:

ð31Þ
The value of � which produces the minimum value of H,
� ¼ ��, is given in this asymptotic limit

�� �
�
10

K

�1
4

; ð32Þ

which yields

H � K þ 1:8973
ffiffiffiffi
K

p
þ 1þ OðK�1

2Þ; for K ! 1:

ð33Þ
The universal behavior HðKÞ is plotted in Fig. 8 where the

continuous line corresponds to this universal curve obtained
using a numerical iteration. In order to give a direct
comparison between theory and experiments, we have used
experimental data corresponding to a granular material
referred as a developer which is made up of a mixture of
toner particles and carrier beads of size around 100�m. This
material plays an essential role in the xerographic process.
The data were obtained from experiments reported by
Valverde et al.31) and Genovese et al.21) Experiments
reported by Genovese et al.21) were made by using developer
samples on a substrate (circular disc of 7.52 cm diameter).
The cohesive sample has had radius between, 0:2 cm 

R 
 3:0 cm and a height of h ¼ 0:7mm. The values for the
cohesion coefficient ranged from �t ¼ 1:1 Pa for low
cohesion to �t ¼ 12:6 Pa for medium cohesion. The bulk
density of the developer was 
 � 3 gr/cm3. For low cohesion
the reported value of �0 was �0 ’ 0:59, while for medium
cohesion �0 ’ 0:62.21,31) The Froude number for these
experiments varied between 0:54 
 Fr 
 1:21. In Fig. 8 we
show that the data fit very well the universal curve and
shows the usefulness and convenience of the employed

normalization. The asymptotic limits of high and low
cohesion, obtained respectively from eqs. (30) and (33),
are plotted as a visual guide. Experiments with very high
cohesion were not reported in this case.21)

5. Remarks and Conclusions

In this paper we have shown that the continuum treatment,
by using the CYC, let us use analytical approaches and,
consequently, gives an adequate description for the flow, the
free surface deformation and the fracture in granular media
in good accordance with the experimental observations. For
example, during the horizontal rotation of cohesionless
granular material the continuous regime of flow can be
easily studied. A power law for the rapid surface current is
obtained in accordance with the experiments and indepen-
dent on the geometry of the container. Due to it our model
also gives an adequate basis for the modeling of the
dissipative term in the shear stress balance equation during
flow.

The problem of the rotation of cohesionless granular
material with a vertical axis of rotation, in general is a very
complex phenomenon; one must take into account not only
the gravitational and the centrifugal forces, but also the
history of the motion through the friction force. However,
the history or memory effect disappears for continuously
increasing or decreasing slow rotation, as the grain achieves
the critical state everywhere. In this case, from a continuum
point of view, this problem can be understood and a simple
analysis can correctly describe the motion. Hysteresis in
avalanche processes is related to the changes in the slope
near the maximum angle and the frictional and packing
factors within the bulk. In this problem the hysteretic
behavior is related with these factors but additionally the
initial and boundary conditions. Clearly, the accelerated
sand box doesn’t present this rich phenomenology but the
study of this system should be useful, for example, for the
structural designers because grain transportation is a very
common situation.

Finally, we have deduced an universal description for the
fracture patterns in a cohesive granular material. Here the
fact the material is dry only was specified in relation to the
experimental data (xerographic powders). We showed that
the universal curve should actually determine the size and
the relative importance of the phenomenological coefficients
in this phenomenon. Experiments with materials having very
high cohesion were not reported but these materials are not
scarce, for instance, �t ’ 50 kPa for stiff clays (wet cohesive
material).19) So, the obtention of experimental data for a
comparison with the theoretical prediction is very important.
Work in this direction is in progress.
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