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(Received November 15, 2002)

In this work, we have theoretically studied the imbibition process in a cylindrical capillary under a
constant, longitudinal temperature gradient, G. A closed-form analytical solution has been obtained and
the Washburn law (valid for the isothermal case) has been found to hold for G ¼ 0. The space and time
evolution of the interface is strongly dependent on surface tension and the viscosity with temperature. By
using reported data for an organic oil (squalene), we showed how imbibition can be accelerated when the
temperature gradient is negative.
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In nature and in technology, there are many systems
where fluids spontaneously penetrate into capillaries or
porous materials.1–3) In isothermal cases, spontaneous flow
occurs essentially due to driven capillary pressure, pc, which
originates from surface tension, �. In a cylindrical capillary,
this pressure is pc ¼ 2� cos �=a, where a is the radius of the
capillary and � is the contact angle of the liquid–air interface
with the solid surface (see Fig. 1). Due to the dominant
viscous force within the capillary it is reasonable to consider
the flow as a Poiseuille-like flow. In this case, the imbibition
front without considering gravity, hðtÞ, advances in accor-
dance with the well-known law4) h2 ¼ ð�a cos �=2�Þt, where
t is the time elapsed to reach the distance h, � is the dynamic
viscosity and � is the fluid density, all considered constants
in an isothermal case. On the other hand, when the
imbibition occurs in a fully saturated porous sample, the
radius a given in the previous relation, has to be changed by
the size of the effective hydraulic pore, dh, which is a
function of the permeability of the porous medium, Km.

In a more general case, imbibition can occur when the
capillary or the host porous material are differently heated.
In an oil reservoir, for example, this is a common situation
because there exists a geothermal gradient which can be

assumed as constant close to the earth’s surface. Also, in the
same context, during enhanced oil recovery, heat is
frequently introduced into the reservoir by injecting steam
or hot water, generating strong temperature gradients around
the injection zones.5) Other types of systems where capillary
forces are influenced by temperature gradient, are those
referred to as microfluidic pumping systems,6–9) where
spontaneous upward flows are produced on vertical walls
under temperature gradients by surface tension gradients
(Marangoni films). The treatment of these systems is the
main motivation for searching the possibility of several
kinds of imbibition flow within a capillary under long-
itudinal temperature gradients.

Because some samples of porous materials can be
considered to be made of a bundle of capillary tubes of
mean pore size, dh, determining the effect of temperature
gradient on the flow in a single capillary is a fundamental
step that could be useful in understanding the capillary flow
in these more complex systems. Thus, we consider the
temperature variations in both surface tension and dynamic
viscosity as the cause of the notable changes in the behavior
of the flow in a cylindrical capillary under the temperature
gradient G, without considering gravity. Later, we shall
discuss a working case where theoretical predictions show
strong differences between isothermal and non-isothermal
imbibition processes. Finally, at the end of this letter, we
shall discuss the main conclusions and limitations of our
approach.

Here, we perform a theoretical study in order to show the
effect on capillary flow of a constant temperature gradient
imposed along a cylindrical capillary, G ¼ �T=H, where
�T ¼ ðTu � T0Þ is the temperature difference between the
upper (Tu) and lower (T0) tips of the capillary and H is its
length. This is shown in Fig. 1. For such a type of creeping
flow with a Reynolds number smaller than unity, the fluid
during its advance achieves automatically the solid tem-
perature distribution. Thus, the diffusive regime is assumed
to be dominant. This last condition is commonly met, for
instance, in thin capillaries because the diffusive time tD ¼
a2=�f (�f is the thermal diffusivity of the fluid) is very small
compared with the transit time, tI ¼ a=jdh=dtj.

Assuming that gravity is absent and that a Hagen–
Poiseuille flow is developed within a thin pipe by capillary
pressure, the wall shear stress is �w ¼ 4�u=a,2) which acts
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Fig. 1. Schematic view of the imbibition phenomenon in a cylindrical

capillary of radius a and length H under the temperature gradient

G ¼ �T=H.
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on the inner surface of the capillary. Here, u is the mean
velocity of the flow. The motion equation is then obtained by
balancing the (frictional) viscous force with the capillary
force, resulting inZ hðtÞ

0

�wdA ¼ 2��ðhðtÞÞa cos �: ð1Þ

Here, the viscous term has to be integrated from 0 to hðtÞ
because it acts on each differential element of area
dA ¼ 2�ady, adjacent to the capillary’s inner wall, while
the capillary force itself acts only on the entire free surface
�a2 at y ¼ h. This type of approach has been successfully
employed for an isothermal case in a series of studies related
to imbibition (For instance, see refs. 10–13). In the present
case, as was mentioned above, the viscosity is affected by
the spatial change in temperature along the capillary, but the
surface tension depends on the instantaneous height, hðtÞ, of
the free surface (imbibition front), where temperature is
known Tðy ¼ hÞ ¼ Gh. Assuming that contact angle � does
not change with temperature or front movement, eq. (1)
takes the form

4
dh

dt

Z hðtÞ

0

�ðyÞdy ¼ a�ðhðtÞÞ cos �: ð2Þ

To solve this equation by introducing the existence of a
temperature gradient, we assume a linearized form of the
dependence of � and � on temperature, such that � ¼
�0ð1þ 1=�0ðd�=dTÞGyÞ and � ¼ �0½1þ 1=�0ðd�=dTÞGh�,
where �0 and �0 are the values of dynamic viscosity and
surface tension at a reference temperature, T ¼ T0, respec-
tively. By substituting both relations in eq. (2) and evaluat-
ing the integral, we obtain

hþ
Gh2

2�0

d�

dT

� �

1þ
Gh

�0

d�

dT

� � dh

dt
¼

a�0 cos �

4�0

: ð3Þ

This nonlinear differential equation has an exact solution,
which can be expressed in a simple form using dimension-
less variables [� ¼ h=a and � ¼ ð�0 cos �=4a�0Þt] and
dimensionless parameters that take into account the changes
in viscosity and surface tension with temperature.

A ¼
Ga

2�0

d�

dT
and B ¼

Ga

�0

d�

dT
ð4Þ

Under the initial condition � ¼ 0 at � ¼ 0, the solution is

1

2B3
2B2�þ AB2�2 � 2AB�þ 2ðA� BÞ lnð1þ B�Þ
� �

¼ �:

ð5Þ

This expression can be analyzed in the asymptotic limit
B� � 1, by expanding the logarithm, resulting in

� ’
ffiffiffiffiffi
2�

p
�

2ðA� BÞ
3þ 2

ffiffiffiffiffi
2�

p
ðA� BÞ

�: ð6Þ

This result shows that the Washburn law (� ’
ffiffiffiffiffi
2�

p
) is

obtained immediately if the temperature gradient vanishes,
making both A and B equal to zero. The same law arises
when A ¼ B, where both effects identically compensate. The
relative changes in the evolution of the imbibition front

under temperature gradients with respect to the isothermal
Washburn law will be determined based on the relative
values of parameters A and B. These aspects will be
discussed later on by analyzing a particular case. Our
treatment considers the cases of positive or negative
gradients and two isothermal cases with different tempera-
tures.

Figure 2 shows the steady-state temperature field experi-
mentally obtained with an infrared camera, from a cylin-
drical capillary glass, under a temperature gradient
G ¼ �1250K/m. The image is shown as visual evidence
of the existence of an actual constant temperature gradient
along the capillary. After the gradient was imposed, it was
necessary to estimate the changes in imbibition rate under
temperature gradients with respect to the isothermal case.
Here, we have considered a substance called squalene,6) an
organic oil with the chemical formula C30H50. The selection
of this fluid is also based on the notable changes in surface
tension and viscosity reported for this substance at wide
temperature intervals.6) Squalene has thermal diffusivity
�f ¼ 10�7 m2/s. If it penetrates into a capillary of radius
a ’ 2:5� 10�4 m, its diffusive time is tD ¼ 0:5 s, which is
much smaller than the imbibition time which at a similar
characteristic distance is approximately around 10 s.

Figures 3 and 4 show the plots of surface tension and
dynamic viscosity, respectively, as a function of T in the
range of 288:15K � T � 303:15K. These data were taken

Fig. 2. Isotherms in a cylindrical capillary of radius a under a temperature

difference �T ¼ ðTu � T0Þ ¼ �15K along H. In this case, we have a

negative gradient because the lower tip is warmer than the upper one.

Fig. 3. Squalene surface tension as a function of temperature for a

temperature interval between 288.15 and 303.15K. Note, in this case, the

approximately linear behavior of �ðTÞ.
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from Ludviksson et al.6) In both plots, we notice that both
quantities decrease as temperature increases. Given the way
in which � and � evolve when T changes, the determination
of the dimensionless gradients A and B is straightforward. In
Fig. 5, we have plotted these dimensionless quantities for
G > 0, G < 0 and G ¼ 0. It is important to note that the
graphs of A are not symmetrical due to the difference in
reference �0 between cases G > 0 and G < 0. The plots for
the evolution of the imbibition fronts in a capillary with the
aforementioned radius are shown in dimensionless form for
several temperature gradients in Fig. 6. In fact, the dimen-
sionless plots in Fig. 6 correspond to a) isothermal imbibi-
tion for T ¼ 303:15K (thin continuous line), b) isothermal
imbibition for T ¼ 288:15K (bold continuous line), c)
imbibition under a positive gradient G ¼ 1250K/m when
the lower tip is at 288.15K (dashed line) and d) imbibition
under a negative gradient G ¼ �1250K/m when the lower
tip is at T0 ¼ 303:15K (dashed curve), as in Fig. 2.

It should be noted that the imbibition at T ¼ 303:15K is
faster than that at T ¼ 288:15K. Clearly, this is due to the
low viscosity of the fluid at high temperature and to the very
slow change in surface tension at this interval. Moreover, we
graphically note that when the gradient is positive, the
imbibition is similar to that occurring for case a). This
indicates that a high viscosity exerts a strong damping effect
on the flow in addition to the weak driven capillary force.
Conversely, when the gradient is negative, i.e., when the
fluid goes from the warmer region to the cooler, the
imbibition is faster.

The behavior observed here for the imbibition under a
negative gradient is, in some sense, similar to that observed
for upward flows, which also occur under negative gradients.
However, theoretical studies for upward flows6–9) do not
take into account variations in viscosity with temperature.
Our study in this sense provides some idea about the relative
importance of this quantity in relation to the properties of
such types of flow.

Recent experiments on real rocks have shown that
imbibition (and consequently oil recovery) is effectively
accelerated when the temperature of a porous sample is
increased.5) This study does not present any theoretical
models for explaining this behavior. This latter case and the
ones where temperature gradients are imposed can be treated
with the present model by determining the mean size of

hydraulic pores and replacing it with the radius of capillary, a.
In this letter, we have reported how temperature gradient

affects the front dynamics within a cylindrical capillary.
Using a balance of force equation, we have evaluated the
relative importance of temperature gradient, surface tension
and dynamic viscosity in fluid motion. For squalene, we
found that a negative gradient accelerates flow during
imbibition, due to the low viscosity specific for these types
of changes in temperature. In particular, the data used for
this substance has permitted us to observe only noticeable
changes for the dimensionless gradient A and almost a

Fig. 4. Variation in dynamic viscosity �ðTÞ as a function of temperature

for the same interval and substance used in Fig. 3.

Fig. 5. (a) Plot of the dimensionless parameter A as a function of T for

cases of G < 0 and G > 0 for squalene and gradient given in the text. (b)

Plot of the dimensionless parameter B as a function of T for the same

cases referred to in (a).

Fig. 6. Dimensionless time evolution of the imbibition fronts for cases

discussed in text with constant temperature and with constant positive

(G ¼ 1250K/m) or negative gradients (G ¼ �1250K/m) in a single

cylindrical capillary. Notice that imbibition is faster at T ¼ 303:15K

(thin line) than at T ¼ 288:15K (bold line). Moreover, a positive gradient

slows imbibition (dashed line) while a negative gradient accelerates

imbibition (upper dashed curve).
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constant value for gradient B in the indicated temperature
range. Through these quantities, we have shown that the
acceleration/deceleration of imbibition depends strongly on
the type of fluid and the size of the capillary. Future
experimental investigation will be very useful to prove our
predictions. Work along this line is now in progress.
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