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ABSTRACT

In this work, theoretical and experimental studies are presented on the
natural convection flow in a naturally fractured reservoir, produced by
a vertical geothermal gradient. The present approach considers finite
oil-filled, tilted fractures with small aspect ratios, with a fluid thermal
conductivity assumed to be very small compared with the thermal con-
ductivity of the rock matrix. These assumptions are fully justified for ac-
tual Mexican naturally fractured reservoirs. Finite tilted porous layers
saturated with oil have also been considered. In all the cases studied,
convection occurs under any vertical temperature gradient. In addition,
the diffusion and dispersion of nitrogen (N2) is studied, with this sub-
stance located initially at the top of the fracture. In these types of flows,
the influence of convection over diffusion and dispersion of passive sub-
stances is extremely small.
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NOMENCLATURE

C∗ dimensional mass concentration u1 dimensionless, 

C dimensionless mass concentration first-order filtration velocity

cv specific heat of constant fluid volume (u∗ , v∗ ) dimensional, two-dimensional velocity 

Dd dispersion coefficient field (or filtration velocity field 

D diffusion coefficient in the porous medium)

(or effective diffusion (x∗ , y∗ , z∗ ) dimensional, fracture coordinates

d coefficient in a porous medium) (x1
∗ , y1

∗ , z1
∗ ) dimensional, left-hand-side coordinates

fracture width of the solid

G temperature gradient (x2
∗ , y2

∗ , z2
∗ ) dimensional, right-hand-side coordinates

g gravity acceleration of the solid

H height of the solid block (matrix) (x, y, z) dimensionless, fracture coordinates

h fracture length (u, v) dimensionless velocity field 

K permeability of the porous medium (or dimensionless filtration velocity 

kf fluid thermal conductivity field in the porous medium)

kT overall thermal conductivity (x1, y1, z1) dimensionless, left-hand-side

ks rock thermal conductivity coordinates of the solid

L solid length (x2, y2, z2) dimensionless, right-hand-side

Y dimensionless mass concentration coordinates of the solid

p0 dimensionless, zeroth-order effective Si separation surface between the slab 

pressure in the porous layer and the solid matrix

p1 dimensionless, first-order effective (i = 1 LHS fracture’s wall

pressure in the porous layer and i = 2 RHS fracture’s wall)

p∗ dimensional pressure TH temperature at the lower part of the solid

p dimensionless pressure TC temperature at the upper part of the solid

pc characteristic pressure T0 temperature of reference

t∗ dimensional time Pr Prandtl number

t dimensionless time Ra Rayleigh number

tcD characteristic diffusive time Peα dispersive Peclet number

tcC characteristic convective time Pe diffusive Peclet number

uc characteristic velocity (characteristic PeT thermal Peclet number in the matrix

filtration velocity field

 in the porous medium) Greek letters

u0 dimensionless, zeroth-order α dispersivity coefficient

filtration velocity β thermal volume expansion coefficient



1. INTRODUCTION

It is well known that an oil reservoir is subjected (in
absence of near hot bodies) to a vertical temperature gra-
dient G, the geothermal gradient, which is approximately
constant (see, for instance, Phillips, 1991). This thermal
gradient produces changes in the fluid density and thus
self-organized, cellular, convective currents (Nield and
Bejan, 1998; Phillips, 1991) can be developed in the oil-
saturated homogeneous porous medium. To our knowl-
edge, the researchers who initially determined the critical
value of the Rayleigh number Rac (a dimensionless pa-
rameter that relates the body to viscous forces) were Hor-
ton and Rodgers (1945) and independently Lapwood
(1948) (HRL problem). In fact, they have determined that
the minimum value of the Rayleigh number to start the
convective motion is given by Rac = 4π2. This result is
similar to the convective problems, where gaps are filled
with viscous fluids, under the action of vertical tempera-
ture gradients (Rayleigh–Benard problem). When the gap
has infinite width and finite height, the well-known critical
Rayleigh number is Rac = 1708. On the other hand, if the

temperature gradient is horizontal along a finite gap (for
example, different temperatures on the two parallel walls
of the gap) the convective motion occurs for any value of
the Rayleigh number, even if it is very small, i.e., there is
no critical Rayleigh number (Bejan, 1995).

The field of thermal convection in fractured reservoirs
is very important in petroleum engineering, but has been
scarcely studied in the past. The present work will show
that the study of convection in a single, finite fracture is
sufficient to understand the main aspects of the convection
in the overall fractured reservoir. In this sense, it is perti-
nent to comment that the present work is based partially
on the archetypal problem of an infinite tilted fracture
treated ten years ago for a fluid-filled fracture and for a
tilted, saturated porous layer by Woods and Linz (1992)
and Linz and Woods (1992), respectively. In those works,
they have considered infinite-length fractures immersed in
an infinite solid and, under this approximation, they deter-
mined that the convective motion always occurs (as in the
case of a gap with horizontal gradient). The cause of this
phenomenon is that the isotherms are shifted close the
fracture. In the present work, it has been considered the
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θ dimensionless temperature Γ aspect ratio of the tilted cavity

in the fluid (fracture, vug, or porous layer)

σ convective dimensionless time second-order dimensionless 

(fluid-filled cavity) Θi temperature in the solid matrix obtained

σp convective dimensionless time through numerical method

(saturated porous layer) ϕ first-order stream function

θi dimensionless temperature ∆ = (TH−TC) temperature difference

on the part i of the solid (ξi, ηi)
rescaled coordinates of part i of the
solid

Φ fracture inclination angle

ϕ fracture porosity Subscripts

κf fluid thermal diffusivity i refers to each part (i = 1 left-hand side 

κT overall thermal diffusivity or i = 2 right-hand side) of the solid

κs rock thermal diffusivity f refers to the fluid

µ dynamic viscosity s refers to the solid

ν kinematic viscosity

ψ stream function Superscripts

ρ0 reference density * refers to dimensional quantities

τ porous medium tortuosity



approximation of an impervious rock (solid) of finite
dimensions, which is subjected to an imposed vertical
temperature gradient G = ∆T ⁄ H, where ∆T is the overall
temperature difference between the bottom and the top of
the reservoir and H represents its height.

In Section 2, the governing equations for the fluid and
the solid are formulated. Assuming that the solid has an
embedded, tilted slab of finite length h and width d, and
that the material within the slab has very different thermal
conductivity in comparison with that of the rock itself, it
is shown that a noticeable distortion occurs in the iso-
therms around the fracture. In short, it gives rise to a system
where the convection always exists. In general, the aspect
ratio Γ = d ⁄ h and the ratio of the thermal conductivity of
the fluid kf, to that of the rock ks are very small compared
with unity. For instance, limestone has a thermal conduc-
tivity around ten times that of oil and so κ = kf

 ⁄ ks << 1
(Bear, 1972; Davies et al., 1981).

In most cases of interest in connection with fractured
oil reservoirs, both Γ and κ are small compared with unity.
But, given the large variety of oil-filled slabs present in a
reservoir, the ratio of these two parameters may span a
wide range of values, both large and small compared with
unity. In the case of κ small compared with Γ, the heat
conduction across the slab can be neglected and the tem-
perature in the solid around the slab Ts satisfies Laplace’s
equation with adiabatic boundary conditions at the fracture
interface. The formal treatment and justification of this
approximation for an oil-filled slab like an oil-filled vug
(Γ D 1) will be given in Section 3. This procedure is only
useful for the case of a vug and it is not useful for solving
the problems of convective flow in slim fractures (Γ << 1)
and in oil-saturated porous layers. The theoretical treat-
ment of the convection will be given in all cases as a
combination of analytical, asymptotic, and numerical
techniques, and detailed developments will be presented
in Section 4, for convection in a vug and in a slim fracture.
The study of convection in a tilted porous layer will be
given in Section 4. The manner in which dispersion (or
transport) of a passive substance occurs due to the simul-
taneous presence of molecular diffusion and natural con-
vection within the cavities will be discussed in Section 5.
This latter study now has an enormous impact due to the
novel enhanced oil-recovery procedures used in naturally
fractured reservoirs. Finally, the conclusions and some
very important remarks in relation to the convection and
dispersion in actual reservoirs will be given in Section 6.

2. THEORETICAL MODEL
FOR A TILTED SLAB

The archetypal system to be analyzed is a block of finite
width L and height H with L >> H and infinite depth in
order to have an effective two-dimensional flow in a tilted
fracture, under a vertical temperature gradient G. In Fig.
1a, the coordinate systems, the dimensions of the block,
and the fracture (tilted slab) are shown, together with the
corresponding physical properties of the fluid and the
block. The temperature at the top of the block is TC and
that at the bottom is denoted by TH. Far away from the
fracture (at both edges) the isotherms are horizontal, but
close to the fracture itself they are deformed due to the
thermal conductivity differences between the fluid inside
the fracture and the block material. The way in which the
isotherms change and their effect on the convective flow
will be discussed below, first for the fluid-filled vug, then
for a fluid-filled slim fracture, and finally for the saturated
porous layer. Incidentally, Wang et al. (1987) have con-
sidered the case of a vertical slab embedded in a finite
block under a vertical temperature gradient. The existence
of a set of critical Rayleigh numbers, depending on the
depth of the block, was reported there. However, the
inclined fracture always induces a global convective flow,
independent of the Rayleigh number. 

In Fig. 1b, the experimental setup is shown schemati-
cally. The plate is a metallic block where a vug-like or
fracture-like hole has been drilled. The thermal gradient
was established using thermal baths and channels in the
upper and lower sides. The fluids employed were water
and glycerine. Particle image velocimetry was used to
measure the velocity field and the temperature contours
were obtained with an infrared camera. 

2.1. Fluid-filled Slab

Three different coordinate systems are used as shown in Fig.
1a. The first one corresponding to the fracture (x∗ , y∗ ) and the
other two for the left- (x1

∗ , y1
∗ ) and right-hand (x2

∗ , y2
∗ ) sides of

the solid matrix. The Boussinesq approximation has been
assumed to be valid. The steady-state momentum balance
equations for the fluid inside the fracture are given by
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* *
* *

0 * *

* 2 * 2 *
*

2 2* * *
( )

 ∂ ∂ρ + ∂ ∂ 
 ∂ ∂ ∂= − + µ + −ρ  ∂ ∂ ∂ 

x

u u
u v

x y

p u u
T g

x x y

(1)



for the longitudinal and transverse direction, respectively.
The mass conservation equation for the assumed incom-
pressible fluid is





∂u∗

∂x∗  + 
∂v∗

∂y∗




 = 0 (3)

whereas the energy conservation equation is written as 

This set of governing equations must to be solved together
with the following boundary conditions. Fluid adherence
to the fracture walls

u∗  = v∗  = 0    at    x∗  + y∗  ⁄ tan φ = 0 ,

                   x∗  + y∗  ⁄ tan φ = h

             and    y∗  = 0, d (5)

and temperature continuity at the fracture walls

T = TH          at    x∗  + y∗  ⁄ tan Φ = 0 ,

T = TC          at   x∗  + y∗  ⁄ tan Φ = h ,

T = T2(S2)    at   y∗  = 0 ,

T = T1(S1)    at   y∗  = d (6)

Here Si is the interface along ybi
∗  = (1−L ⁄ H tan Φ)H ⁄ 2

+ xi
∗  tan Φ, where i = 1, 2. 

2.2. Heat Conduction in the Rock

The solid obeys the Laplace equation in both solid
blocks 
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Figure 1. a) A schematic view of a rock block where a fracture (porous layer) of width d and length h is inclined respective
to the horizontal plane at an angle Φ. The overall block is under a temperature difference ∆T along the vertical height H. It is
important to notice that at the block edges the gradient is constant when the length L is large enough. Numbers 1 and 2 refer
to the LHS and the RHS, respectively, of the block. b) The experimental setup is shown schematically.

* *
* *

0 * *

* 2 * 2 *
*

2 2* * *
( )

 ∂ ∂ρ + ∂ ∂ 
 ∂ ∂ ∂= − +µ + −ρ  ∂ ∂ ∂ 

y

v v
u v

x y

p v v
T g

y x y

(2)

2 2
* *

0 2 2* * * *

  ∂ ∂ ∂ ∂ρ + = +    ∂ ∂ ∂ ∂   
v f

T T T T
c u v k

x y x y
(4)







∂2Ti

∂xi
∗ 2

 + 
∂2Ti

∂yi
∗ 2




   for   i = 1, 2 (7)

where the subscript i is referred to each part of the solid (i
= 1 for the LHS and i = 2 for the RHS). Equations (7) will
be solved with the boundary conditions imposed on each
part of the solid. For the left- (right-) hand side block:
constant temperature TH at the top, constant temperature
TC at the bottom, adiabatic edge on the left- (right-) hand
side, continuity of temperature and heat flux at S1 (S2):

Here ni = (h ⁄ 2 − xi) sin Φ − yi cos Φ denotes the normal
coordinate to the fracture walls pointing in the direction of
solid i. By considering the dimensionless form of the
equations, some useful approximations are introduced in
the study of convection within several types of slabs
embedded in the rock. 

2.3. Dimensionless Equations

2.3.1 Fluid inside the fracture:

The following dimensionless variables for the spatial coor-
dinates, velocity field, and temperatures are introduced as

x = 
x∗

h
 ,    y = 

y∗

d
 ,    u = 

u∗ d
Ra ν

 ,

v = 
v∗ d

Ra Γν
 ,    θ = 

T−TC

∆T
(9)

respectively. The nondimensional parameters arising in this
formulation are the aspect ratio Γ, the Rayleigh number Ra,
and the Prandtl number Pr defined, respectively, as

Γ = 
d
h

 ,   Ra = 
gβ∆Td3ρ0cv

kfν
 ,   Pr = 

νρ0cv

kf
(10)

In terms of the stream function ψ (u = ∂ψ ⁄ ∂y, v = −∂ψ ⁄ ∂x),
Eqs. (1) and (2) transform into

while the energy Eq. (3) transforms into

The boundary conditions, Eqs. (5) and (6), take the dimen-
sionless form

2.3.2 Solid:

Introducing the nondimensional variables for the solid
blocks

yi = 
yi
∗

H
 ,    xi = 

xi
∗

H
 ,    θi = 

Ti−TC

∆T
(14)

Eq. (7) yields

∂2θi

∂xi
2  + 

∂2θi

∂yi
2  = 0    i = 1, 2 (15)

To be solved with the dimensionless form of the boundary
conditions, Eq. (8), resulting

For an oil reservoir made of limestone we have κ < 1
because in this case kf = 0.035 cal/(m⋅s⋅K) (oil) and ks =
0.5 cal/(m⋅s⋅K) (limestone), and so κ = 0.07 (Bear, 1972).
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( )*

*

*

*

*
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at ( 1) ,
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1
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S
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θ
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3. CONVECTIVE REGIMES
FOR A VUG AND A FRACTURE

The ensuing analysis can be greatly simplified by consid-
ering the cases for low Rayleigh numbers and additionally:
(a) aspect ratio Γ of the order of 10–1 but much larger than
the ratio of conductivities κ, and (b) aspect ratio Γ very low
compared with the ratio of conductivities κ. The cavity of
case a that satisfies the specified conditions is considered
here as a vug (note that the definition of a vug arises from
a geometrical point of view, instead of coming from a
dissolution process). Both cases studied occur very fre-
quently in fractured reservoirs and, because of their impor-
tance, they will be treated in detail below.

3.1. Vugs

For this limit 10−1 D Γ >> κ, Eqs. (15) as well as in the
boundary conditions, Eqs. (16), the problem of the convec-
tion can be simplified because the energy equations in the
blocks become independent from the fluid equations. The
resulting boundary conditions at the block-fracture inter-
faces transform to ∂θi

 ⁄ ∂ni = 0 at Si. The numerical scheme
can be simplified using the following nonorthogonal set of
transformations for i = 1, 2

where the blocks have been transformed into unit squares.
The Laplace equations (15) and the corresponding bound-
ary conditions, Eqs. (16), now are transformed to

and 

Equations (18) with the boundary conditions, Eqs. (19),
have been numerically solved using conventional centered
finite differences. An alternative method called boundary
integral equation method (BIEM) (Ligget et al., 1988) is
very useful for the numerical solution of harmonic equa-
tions in complex geometries, and thus it was employed to
solve the above equations obtaining similar results. In the
same way, the dimensionless energy equation for the fluid,
Eq. (12), under the approximations given above yields
∂2θ ⁄ ∂y2 = 0, whose solution is given by

θ = θ(x) + [θ2(S2) − θ1(S1)]y (20)

Here, θi(Si) are the numerical values of the nondimensional
temperature at the RHS and at LHS block-fracture inter-
faces, respectively. In Fig. 2, a direct comparison between
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Figure 2. Experimental and theoretical temperature profiles inside the vug and in the blocks.
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an actual temperature distribution (infrared image), ob-
tained from a solid block having a fluid-filled vug, and the
theoretical temperature profiles are given. As is evident in
such a figure, the agreement between these dimensionless
temperature fields is good. This actual temperature distri-
bution was taken from Luna-Rojero (2003) where the
assumed conditions in the theoretical model were
achieved.

By the way, the nondimensional momentum equation for
the fluid, Eq. (11), in the above approximation reduces to

∂2ψ
∂y4

 = 
sin Φ [θ2(S2) − θ1(S1)]

Pr
(21)

or in terms of the velocity,

d2u

dy3 = 
sin Φ [θ2(S2) − θ1(S1)]

Pr
(22)

which is solved with the boundary conditions given by
Eqs. (13). The solution for the velocity in the approxima-
tion of a very low Rayleigh number for the flow within the
vug yields

u = 
∂ψ
∂y

 = 
sin Φ[θ2(S2) − θ1(S1)]

12Pr
(2y3 − 3y2 + y) (23)

u~ = u ⁄ 

 [θ2(S2) − θ1(S1)] sin Φ ⁄ (12Pr)




[T1]and the experimental data for a Rayleigh number Ra
= 0.9 are plotted in Fig. 3a. In Fig 3b is shown the velocity
field obtained with particle image velocimetry. Notice that

this profile exists for any value of Ra and, consequently,
it occurs at any temperature difference. The agreement
between theory and experiments, including the tempera-
ture profiles, is excellent. The symmetric flow already has
been observed in experiments (Luna et al., 2002; Luna-Ro-
jero, 2003). Having this confidence in our approach, we
also treat the case of a tilted, slim fracture in the following
subsection.

3.2. Fracture

The typical fractures in a reservoir have very small aspect
ratios compared with unity. In this case, the ratio of ther-
mal conductivities κ is assumed to be very large compared
with Γ. In this parametric region, the fluid and block
equations are coupled (contrary to the vug problem). The
solution in this regime can be obtained by using a combi-
nation of asymptotic analysis together with the BIEM
code. Thus, the solution for the nondimensional tempera-
ture of the blocks θi, the temperature in the fluid θf, and
the stream function ψ are assumed to be given by the
following asymptotic series

θi = θi,0 + Γθi,1 + O(Γ2) ,

θ = θf0 + Γθf1 + O(Γ2) ,

ψ = ψ0 + Γψ1 + O(Γ2) (24)

Introducing Eqs. (24) into Eqs. (11), (12), and (15) and
the corresponding boundary conditions, Eqs. (13) and
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Figure 3. a) Experimental and theoretical dimensionless velocity profile u~ as a function of y in a vug or in a fracture. b)
Velocity field in a vug obtained with particle image velocimetry.



(16), yields the following set of equations for the leading
order in Γ 

∂2θf0

∂y2  = 0 (25)

∂4ψ0

∂y4
 + 

sin Φ
Pr

 
∂θf0

∂y
 = 0 (26)

∂2θi,0

∂xi
2  + 

∂2θi,0

∂yi
2  = 0 (27)

The first-order correction equations take the form

∂2θi,1

∂xi
2  + 

∂2θi,1

∂yi
2  = 0 (30)

with the boundary conditions

Moreover, the stick condition on the fracture walls yields

∂ψ0

∂x
 = 

∂ψ1

∂x
 = 

∂ψ0

∂y
 = 

∂ψ1

∂y
 = 0    at    Si (32)

The solutions up to the first order in are given by:

v = 0 + O(Γ2) (35)

θ = 1 − x + 
Γ

κ tan Φ
 

1
2

 − y


 + O(Γ2) (36)

where Θ1 and Θ2 are functions obtained by solving the
Laplace equations

∂2Θ
∂xi

2  + 
∂2Θi

∂yi
2  = 0 ,    for    i = 1, 2 (37)

with the boundary conditions

The BIEM method has been employed to find Θ1 and Θ2
in a tilted fracture, for the concrete case Φ = π ⁄ 4 and Γ ⁄ κ
= 0.01. The dimensionless velocity u~ = u ⁄ [(1 ⁄ κ − 1)Γ cos
Φ ⁄ (12 Pr)] is shown graphically in Fig. 3a and it is similar
to the vug case. The experimental infrared image and the
theoretical dimensionless temperature contours are in ex-
cellent agreement (Fig. 4). 

4. CONVECTION
IN A SATURATED POROUS LAYER

The problem of the saturated, tilted porous layer is geo-
metrically similar to that shown in Fig. 1. However, in the
present case, the fracture is replaced by a thin porous layer
(Γ = d ⁄ h << 1) embedded in the block, with permeability
K and porosity ϕ. The viscosity and density of the fluid
(oil) inside the porous layer are µ and ρ, respectively. The
overall thermal diffusivity of the oil-saturated porous me-
dium is designated by kT, then for this case κ = kT

 ⁄ ks. In
the limit of a thin porous layer, the transversal velocity
component is small in comparison to the longitudinal
velocity, which in a wide zone is only dependent on the
transverse coordinate y∗ . The nondimensional governing
equations for the problem considered in the porous layer
are given by

∂u

∂y
 = Γ cos Φ 

∂θ
∂x

 − 
∂θ
∂y

 sin Φ (39)

∫ 
0

1

udy = 0 (40)
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f f
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y y x

ψ ψ ψ ψ
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Ra Γu 
∂θ
∂x

 = Γ2 
∂2θ
∂x2 − 

∂2θ
∂y2

(41)

where the Darcy–Boussinesq flow model has been used,
considering the gravity. The pressure has been removed by
combining the horizontal and vertical Darcy equations. The
density in the fluid is assumed to be linearly dependent of
temperature ρ = ρ0 − β (T − Tf), where ρ0 is the density at a
reference temperature and β is the thermal volume expansion
coefficient. The nondimensional variables are given by 

u = 
µu∗

Kρ0β∆Tg
(42)

and the Rayleigh number for the flow in the porous me-
dium is now defined by

Ra = 
Kρ0βg∆Td

kTµ
(43)

The nondimensional boundary conditions for the tempera-
ture of the fluid in the porous medium are similar to the
case studied previously and given by Eq. (13). The block
equations are defined as in Eqs. (15) and (16).

4.1. Asymptotic Solution

For values of Γ << 1, the solution of this regular problem
can be obtained using Γ as the small parameter of expan-
sion, in the form

The solution up to a term of order Γ are given by

Here Θ1 and Θ2 have to be determined by the solution of
the Laplace equation (37) with the boundary conditions
defined in Eq. (38). Again the BIEM method has been
employed to find Θ1 and Θ2. The dimensionless tempera-
ture profiles in this case are similar to those obtained for
the case of the slim fracture (see, Fig. 4 for the temperature
within the porous layer and the temperatures in the solid
blocks).

5. PASSIVE DISPERSION
AND DIFFUSION IN THE CAVITIES

Passive dispersion is a very important phenomenon related
to the transport of contaminants and occurs when the
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Figure 4. Experimental and theoretical dimensionless temperature profiles (θ1 and θ2) in the solid block and in the slim frac-
ture or a porous layer (θ)
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physical properties of the fluid do not change due to the
concentration variations (Woods et al., 1992; Linz et al.,
1992). Here, the dispersion due to the combined action of
molecular diffusion and convection in both a tilted fracture
and a porous layer have been analyzed in order to know
how any contaminant is transported in these finite systems.
The study of these transport phenomena is very important
in the oil industry as, for example, in the passive transpor-
tation of nitrogen in some enhanced oil recovery processes.
Quantitative estimates are given below for the case of
nitrogen in contact with oil at the top of the fracture under
reservoir conditions with realistic fractures and porous
layers in Mexican, naturally fractured oil fields. 

5.1. Taylor Dispersion
in Fluid-filled Fractures

Following the Taylor analysis (Taylor, 1953) on the effect
of the molecular diffusion on the dispersion, it is possible
in the present work to write the equation of diffusion in the
form

and     C∗  + Cfluid = 1 (47)

where C∗  and Cfluid
∗  are, respectively, the mass concentra-

tion of the contaminant (N2) and the fluid, u∗  is the longi-
tudinal convective velocity, t∗  is the time, and D is the
binary (N2/oil) coefficient of molecular diffusion which is
assumed to be independent of C∗ . As in the Taylor work,
here it is valid to assume that the transverse velocity
component is negligibly small and it can be dropped. The
boundary conditions for solving Eq. (47) are the following:
the concentration at the top of the fracture is given by
C∗  = CN2. The conditions at the nonpermeable interface
fracture-solid block are ∂C∗  ⁄ ∂x∗  = 0 at x∗  + y∗  tan Φ = 0
and ∂C∗  ⁄ ∂y∗  = 0 at y∗  = 0, d. The assumed initial condition
is that the contaminant is absent at t∗  = 0. The nondimen-
sional form of Eq. (47) can be written as

where y = y∗  ⁄ d, x = x∗  ⁄ h, u = u∗ d ⁄ (Ra v), σ = t∗ D ⁄ h2, and
Y = C∗  ⁄ CN2

∗ . Pe = ucd ⁄ D is the diffusive Peclet number
and relates the characteristic transverse diffusion time to
the convective time. The nondimensional boundary condi-
tions are now written as

Nitrogen is convected and diffused down by the flow
coming down in the upper part of the fracture. At the same
time, it also diffuses in the transverse direction, reaching
positions where the convective flow moves up, thus reduc-
ing the global effect of transporting nitrogen down along
the fracture. In typical oil reservoirs, the diffusive Peclet
number is of the order unity or lower. In order to solve Eqs.
(48) and (49), a solution of the form 

Y = Y0 + Γ2Y1 + O(Γ4) (50)

is assumed, for small values of  compared with unity.
Introducing Eq. (50) into Eq. (48), the following set of
equations are obtained

∂2Y0

∂y2  = 0
(50a)

j = 0, 1, 2, ... (51b)

Equation (51a) gives Y0(x, σ). Integrating Eq. (51b) for j
= 0 in the transverse direction, gives 

∂Y0

∂σ
 = 

∂2Y0

∂x2
(52)

where Y0 satisfies the classical diffusion equation, where
convection plays no role at all. The solution of Eq. (52) is
given by

The j = 1 equation in Eq. (51b) now takes the form
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Equation (54) can be integrated, resulting in

where G1(x, σ) has to be obtained for j = 2: 

Equations (55) and (56) show the influence of convection
in the diffusive transport of a passive scalar in this type
of flow, which is extremely small and of the order of Γ
for Γ << 1 .

In Fig. 5, the results for Y
__
(x, σ) = ∫Y

0

1

dy corresponding to

a fracture filled with oil are shown. Here the assumed diffu-

sion coefficient has been set to D = 3.5 × 10–5 cm2/s (Luna

et al., 2003) and the conductivities ratio to κ = 0.07. In the

plot, a characteristic value of the aspect ratio, Γ = 0.1 has
been employed at different nondimensional elapsed times. In
two years, the oil inside the fracture travels, due to natural
convection, about 170 m, but nitrogen only travels a couple
of meters, mainly due to molecular diffusion. Convection
shows an extremely weak influence in the way passive
contaminants (nitrogen) can be dispersed in fractured media.

5.2. Dispersion in a Porous Layer

As in the previous case of a tilted fracture, the dispersion
of passive material in a saturated porous layer also can be
studied if the velocity field is known. However, in this
case, the form of the diffusion equation changes by includ-
ing the enhanced mixing process due to the velocity fluc-
tuations in the porous media. The species conservation
equations are given by (Bear, 1972)

and    C∗  + CFluid
∗  = 1 (57)

where ϕ is the fracture porosity, Dd = D ⁄ τ + α u∗   ⁄ ϕ is
the dispersion coefficient, D is the coefficient of molecu-
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Figure 5. Results for the spatially averaged concentration Y
__

(x, σ = ∫ 
0

1

Ydy in a slim fracture saturated with oil and when N2 was
introduced at its upper part, at different nondimensional times 
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lar diffusion of the contaminant (nitrogen) in the fluid (oil)
in the absence of the porous medium, τ is the tortuosity of
the porous medium, and α is the longitudinal dispersivity
coefficient. 

Equation (57) will be solved under similar boundary and
initial conditions imposed in the fluid-filled fracture given
above. Using the nondimensional spatial coordinates and
the concentration as above, the longitudinal velocity in the
form u = u∗  ⁄ uc = u∗  ⁄ (kρ0β∆T0g ⁄ µ), where u is given in
Eq. (45) and the dimensionless time σp = t∗ D ⁄ h2τ, the
nondimensional form of Eq. (56) is given by

where the diffusive Peclet number is Pe = dτuc
 ⁄ D and the

dispersive Peclet number is Peα = ατuc
 ⁄ D. As in the free

fracture case treated before, here Pe D 1 and Peα D 1. The
solution is sought in the form

Y = Y0 + ΓY1 + Γ2Y2 + O(Γ3) (59)

for small values of Γ compared with unity. The solution to
Eq. (58), found by introducing the series given in (59), is
given by 

In Fig. 6 are shown the dimensionless results for the
dispersion in a porous layer saturated with oil and when
N2 was introduced at its upper part. The dispersive Peclet
number was taken as Peα = 1. Additionally, from field data
it is known that ϕ C 0.15, κ C 0.86, and τ C 1.2. In Fig. 6,
the assumed aspect ratio was Γ = 0.1 at different nondi-
mensional times. In a two year period, the oil has travelled
20 m due to convection while the N2 has only travelled a
couple of meters.

6. CONCLUSIONS AND REMARKS

In this work, the problems of thermal convection in finite,
oil-filled, tilted fractures and tilted porous layers, have
been analyzed. In nature, fractures and layers are embed-
ded within near-impervious porous rocks which are sub-
jected to a geothermal gradient. Here, the influence of
these structures on the temperature distribution by convec-
tion and dispersion has been studied. The theoretical treat-
ment used in this work allows us to determine analytically
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Figure 6. Dimensionless results for the dispersion in a porous layer saturated with oil and when N2 was introduced at its upper
part, at different nondimensional times
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the velocity field and the temperature profiles inside these
fractures and to determine the spatial evolution of the
concentration of a passive scalar, considering molecular
diffusion and dispersion under geothermal-driven convec-
tive flows. Cases for inclinations of fractures with an
inclination angle of Φ = π ⁄ 4 and several combinations of
aspect and conductivities ratio were treated and actual
estimations for the dispersion in limestone oil-reservoirs
were given. In this paper we have shown that the geother-
mal-driven convective flows inside closed fractures do not
change the characteristic overall diffusion or dispersion
processes of conserved scalars injected at one of the ends
of the fractures. Finally, in some reservoirs it is feasible to
have negative temperature gradients, i.e., the temperature
decreases when the depth increases. This situation can
occur naturally or artificially due to the existence of heat
sources adequately localized. In such a case, the treatment
here discussed is made valid by changing ∆T → −∆T when
it occurs. A direct and important result under this change is
that the velocity profiles in all the cases here considered are
inverted in sign. Moreover, this inversion in the flow direc-
tion does not change the main results related to dispersion.
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