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This paper presents a theoretical investigation of the low Rayleigh number conjugate natural convection in
a slender tilted cylindrical cavity which is embedded in a solid that is subject to a uniform vertical temperature
gradient. Two cases have been analyzed; a fluid-filled cavity and a cavity filled with a fluid-saturated porous
medium. The temperature of the solid and the velocity, temperature, and pressure in the cavity have been
determined by analytically solving the coupled problems within and around the cavity. The effect of the ratio
of the thermal conductivity of the material in the cavity to the thermal conductivity of the solid on the structure
of the convection flow is discussed. The theoretical results for convection in the fluid-filled cavity are shown
to be in good agreement with experimental PIV measurements.
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I. INTRODUCTION

A vertical temperature gradient in a solid always induces
a natural convection flow in fluid-filled tilted slots embedded
in the solid, irrespective of the strength of the temperature
gradient and the viscosity of the fluid. This is because the
isotherms would not be horizontal in the fluid at rest, except
in the particular case when the thermal conductivity of the
fluid coincides with the thermal conductivity of the solid. A
number of theoretical and experimental studies �1–8� have
addressed this natural convection flow in very slim slots.
These systems have been assumed to be simple and ideal
representations of fractures occurring in rocks and other
brittle materials. The knowledge thus gained is of enormous
importance to understand the diagenetic processes �3,4�, the
migration of water and oil in subterranean reservoirs �3,9�
and the ice formation from seawater �10,11�, among other
relevant phenomena.

In this paper, we analyze the conjugate natural convection
within tilted, cylindrical cavities embedded in impervious
rocks subject to a vertical temperature gradient. Cavities
filled with a fluid and with a fluid-saturated porous medium
are considered. In addition to its inherent physical interest,
this problem appears frequently in controlled studies of ice
formation �10,11� and in the oil industry, both when pipes are
embedded into subterranean reservoirs to extract fluids and
in connection with hot-fluid-injection oil-recovery methods
�9�. In the last two cases the thermal conductivity of the solid
is large compared with that of the fluid or the effective ther-
mal conductivity of the saturated porous material which fills
the cavity, but due to the large variety of possible applica-
tions, the thermal conductivity ratio may span a wide range
of values, both large and small compared with unity. The
present work presents analytical solutions for the velocity,
pressure and temperature for small Rayleigh numbers. We
deal with the general case where the rock thermal conductiv-
ity is different from the thermal conductivity of the material

in the cavity, and analyze the coupled thermal problems
within and around the tilted cavity. The results for the fluid-
filled cavity have been tested in an experiment carried out in
a tilted, silicon oil-filled cavity embedded in a plexiglas
block which is kept in contact with two blocks of copper at
different temperatures, above and below the plexiglas block.
The agreement between the experimental data and the theo-
retical profiles for such a case allows to conclude that our
model describes well the small Rayleigh number thermal
convection in long cylindrical cavities.

The paper is organized as follows. The thermal problem in
the rock is formulated in Sec. II. In Sec. III the thermal and
fluid flow problem within a very slender cylindrical cavity is
analyzed and solved together with the thermal problem in the
surrounding rock, first for a fluid-filled cavity and then for a
cavity containing a fluid-saturated porous medium. Closed-
form analytical solutions for the temperature, velocity and
pressure are obtained in both cases. Experiments carried out
for a fluid-filled cavity, where the flow visualization is pos-
sible, are discussed in Sec. IV. These experimental results
validate our theoretical approach. Finally, the main conclu-
sions of the work are presented in Sec. V.

II. TEMPERATURE DISTRIBUTION IN THE ROCK

Consider a cylindrical cavity of length 2L and radius a in
an infinite impermeable rock. The axis of the cavity is in-
clined at an angle � to the horizontal. The thermal conduc-
tivity of the material filling the cavity is kf and the thermal
conductivity of the rock is ks. The parameters �=a /L �aspect
ratio of the cavity� and �=kf /ks will be used in that follows.
In actual geophysical systems, these two parameters may
span wide ranges of values, both large and small compared
with unity. The cylindrical coordinates �r* ,� ,x*� of Fig. 1�b�
will be used. Here x* is the distance along the axis of the
cavity increasing upward from the central section of the cav-
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ity, which therefore extends from x*=−L to x*=L, and the
angle � is measured from a vertical plane.

Assume that a uniform vertical temperature gradient G* is
established in the rock. In the absence of the cavity, the tem-
perature TS of the rock would vary linearly with the vertical
distance x1

* of Fig. 1 as TS=T��x1
*�=G*x1

*+T0, where T0 is the
temperature at x1

*=0. The temperature gradient G* can be
positive or negative.

The following dimensionless variables will be used

r =
r*

a
, x =

x*

L
,

�s =
TS − T0

T0
, G =

aG*

T0
. �1�

In terms of these variables, the dimensionless temperature
of the rock far from the cavity is

�� = G� x

�
sin � − r cos � cos �� . �2�

The presence of the cavity changes the temperature of the
rock, which must satisfy

�2�s = 0 �3�

with the boundary condition �s→�� far from the cavity and
conditions at the surface of the cavity which express the
continuity of the temperature and the heat flux. These condi-
tions couple the thermal problem in the rock with the thermal
problem of the material inside the cavity.

III. CONVECTIVE FLOW

Once the problem of the temperature distribution in the
rock has been defined, we may focus on the natural convec-
tion flow arising in the cavity. As noticed previously for slim
tilted fractures embedded in solids �1,7,8�, such a flow must
necessarily exist when the solid is under a vertical tempera-
ture gradient and the thermal conductivity ratio is not equal
to 1, no matter how small the temperature gradient is. This is
the case because the isotherms in the fluid at rest are not
horizontal when ��1 and the cavity is neither horizontal nor
vertical.

The different problem of the onset of convection in a
vertical cylindrical cavity has been extensively studied for
both fluid-filled cavities �12,13� and fluid-saturated porous
cavities �14,15�. There are well-known critical Rayleigh

numbers for each of these cases, at variance with the case of
tilted cavities addressed in this paper. Likewise, the horizon-
tal cylindrical cavities have been widely analyzed for many
heating configurations. Those studies include the fluid-filled
cavity �16� and the saturated porous cavity �17�.

It is worth to note that the present study is restricted to the
case when the aspect ratio and the Rayleigh number are both
small. Under these conditions, there would not exist any con-
vective flow if the slim cylindrical cavity were either vertical
or horizontal �12,15,16�.

The following analysis considers that the fluid has kine-
matic viscosity �, density 	, thermal expansion coefficient 
,
and thermal diffusivity �. A steady-state flow is assumed and
the Boussinesq approximation is applied. The cases of a
fluid-filled cavity and a cavity filled with a fluid-saturated
porous medium are discussed separately.

A. Fluid-filled cavity

1. General formulation

The convective motion within the cavity is governed by
the continuity, momentum and energy equations, which in a
nondimensional form are

� · u = 0, �4�

Ra�u · � �u = − � P + Pr�2u +
Pr

G
��i − ���ig, �5�

Ra�u · � ��i = �2�i, �6�

with the boundary conditions of nonslip and continuity of the
temperature and the heat flux at the surface of the cavity:

u = 0, �i = �s and �
��i

�n
=

��s

�n
at r = 1, �x� � 1 and

x = ± 1,r � 1. �7�

Here ig is a unit upward pointing vector, u= �ur ,u� ,ux� is
the velocity of the fluid, P is a modified pressure which takes
care of the hydrostatic term, and Pr and Ra are the Prandtl
and Rayleigh numbers. The nondimensional variables are de-
fined as follows:

ur =
ur

*a

�Ra
, u� =

u�
* a

�Ra
, ux =

ux
*a

�Ra
, P =

P*a2

	�2Ra
,

�i =
Ti − T0

T0
, Pr =

�

�
, Ra =

g
a4�G*�
��

�8�

and, in terms of the dimensionless x and r introduced in �1�,

� = ir
�

�r
+ i�

1

r

�

��
+ ix�

�

�x
, �9�

�2 =
1

r

�

�r
�r

�

�r
� +

1

r2

�2

��2 + �2 �2

�x2 . �10�

Finally � /�n in �7� denotes the derivative normal to the sur-
face of the cavity.

FIG. 1. Schematic of the physical model and coordinate
systems.
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2. Zero Rayleigh number

We begin discussing the case Ra=0 in which the energy
equation in the cavity, Eq. �6�, reduces to

�2�i = 0. �11�

The temperatures of the rock and the cavity are then of the
form �s=��−G cos � cos �f1�r ,x�+G sin �f2�r ,x� and �i

=��−G cos � cos �f3�r ,x�+G sin �f4�r ,x�. Carrying these
expressions to �3� and �11� we find

�0
2 f1 −

1

r2 f1 = 0 in the rock,

�0
2 f3 −

1

r2 f3 = 0 in the cavity,

f1 = 0 for �x,r� → � ,

f1 = f3,
�f1

�r
− �

�f3

�r
= � − 1 at r = 1, �x� � 1,

f1 = f3,
�f1

�x
= �

�f3

�x
at x = ± 1, r � 1 �12�

and

�0
2f2 = 0 in the rock,

�0
2f4 = 0 in the cavity,

f2 = 0 for �x,r� → � ,

f2 = f4,
�f2

�r
= �

�f4

�r
at r = 1, �x� � 1,

f2 = f4,
�f2

�x
− �

�f4

�x
=

� − 1

�
at x = ± 1, r � 1 �13�

with the additional conditions that the functions f1 to f4
should be regular at r=0. Here

�0
2 =

1

r

�

�r
�r

�

�r
� + �2 �2

�x2 . �14�

Solving �12� and �13� we would find exact solutions of the
coupled conduction problem in the rock and within the cav-
ity for the limit case Ra=0.

Problems �12� and �13� can be further simplified noticing
that for many cases of practical interest, particularly in the
geophysical context, the cavities are slender ��1�. Two
different regions can then be distinguished. End effects due
to the finite length of the cavity are confined to a region of
characteristic size a �or r=O�1� in dimensionless variables�
around each end of the cavity, while the temperature in the
rest of the cavity and the surrounding rock is as if the cavity
were infinitely long. We are interested here only in the latter
region, which is where the main flow takes place. The small
regions around the ends of the cavity need not be analyzed.

The solutions of �12� and �13� for an infinitely long cavity
are f1= �1−�� / �1+��r, f3= �1−��r / �1+��, and f2= f4=0.
Thus, in the case Ra=0, the dimensionless temperature in the
solid around the cylindrical cavity but away from its ends is

�s0
= G� x

�
sin � − cos � cos ��r +

1 − �

1 + �

1

r
�	 , �15�

and the dimensionless temperature within the cavity but
away from its ends is

�i0
= G� x

�
sin � − cos � cos �

2r

1 + �
	 . �16�

The velocity and reduced pressure of the natural convec-
tion flow induced in the cavity by the temperature distribu-
tion �16� can now be determined. Since u� and ur are of the
order of �ux and �1, the main flow is one-dimensional
along the axis of the cavity, ux=ux�r ,��, and Eq. �5� reduces
to

0 = −
�P

�x
+ Pr�2ux +

Pr sin �

�G�
��i − ��� , �17�

with the boundary conditions ux=0 at r=1, ux�� at r=0,
and the condition of zero through flow, 
0

1
0
2�uxrd�dr=0.

The solution of this problem has the form P=0, ux
= f�r�cos �. From Eq. �17�, it follows that

d2f

dr2 +
1

r

df

dr
−

f

r2 = ± sin � cos �
1 − �

1 + �
r , �18�

whose solution with f�0��� and f�1�=0 is f
= ± 1

8 sin � cos � (�1−�� / �1+��)r�r2−1�. Thus

ux0
= ±

sin � cos � cos �

8

1 − �

1 + �
r�r2 − 1� . �19�

The plus sign on Eq. �19� is used for positive thermal gradi-
ents, G�0, and the minus sign is used for negative thermal
gradients, G�0.

3. Small Rayleigh numbers

The previous solutions for the temperature and the veloc-
ity can be corrected in order to consider the effect of a small
but nonzero Rayleigh number. When � is small and Ra�0
Eq. �6� simplifies to

�Ra ux
��i

�x
= �2�i �20�

away from the ends of the cavity.
Rather than formally introducing a perturbation expansion

in powers of Ra, we may use an equivalent iteration method
to find the effects of the convective flow on the temperature
distribution. A first-order correction to the solution for Ra
=0 can be computed by using Eqs. �16� and �19� to evaluate
the left-hand side of Eq. �20�. This equation becomes then
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±
1

8
GRa sin2 � cos �

1 − �

1 + �
r�r2 − 1�cos � = �2�i, �21�

to be solved with boundary conditions that express the con-
tinuity of the temperature and the heat flux at the surface of
the cavity. Writing again the temperature of the rock in the
form �s=��−G cos � cos �f1�r� and the temperature within
the cavity in the form �i=��−G cos � cos �f3�r� �for an in-
finitely long cavity�, we can easily find differential equations
and boundary conditions for the functions f1 and f3. The
corrected dimensionless temperature distributions in the
solid and within the cavity obtained by solving such equa-
tions are

�s = �s0
+ �

�G cos � cos �

96�1 + ��
1

r
, �22�

�i = �i0
+ �G cos � cos �� �1 + 2��r

96�1 + ��
+

r3�r2 − 3�
192

	 ,

�23�

where �s0
and �i0

are the leading order temperatures given by
�15� and �16�, and � is a convection parameter defined as

� = RaG
1 − �

1 + �
sin2 � . �24�

On the other hand, the corrected velocity induced in the
cavity by the temperature distribution �23� is determined by
Eq. �17� with the nonslip and zero through flow conditions
used before. Again, the solution of this problem can be
sought in the form P=0, ux= f�r�cos �. After some algebra
we find

ux = ux0
±

� sin � cos � cos �r

768
� r4

2
−

r6

12
−

1 + 2�

1 + �
r2

+
7 + 19�

12�1 + ��	 , �25�

where ux0
is the leading order velocity given by �19�. Again,

the plus sign on Eq. �25� is used for positive thermal gradi-
ents, G�0, and the minus sign is used for negative thermal
gradients, G�0.

Figure 2 shows local slices of the dimensionless tempera-
ture distribution scaled with G inside and around a tilted,
infinitely long cavity. This figure shows the effect of the
thermal conductivity ratio, �, when �=� /4. Both slices in
Fig. 2 show the plane �=0,�, and correspond to the basic
solutions of �=0, which are only slightly modified for small
values of �. Isotherms labeled as � /G correspond to �s0

/G
when r�1 �Eq. �15�� and to �i0

/G for r�1 �Eq. �16��. If the
solid thermal conductivity is either very large or very small
compared with that corresponding to the material within the
cavity, there is an abrupt change experimented by the iso-
therms and the surface of the cavity is easily identified. The
effect of the cavity on the isotherms in the rock extends to
distances from the cavity wall of the order of its radius. The
effect of the cavity on the isotherms diminishes when the
thermal conductivities become of the same order, and disap-
pear when �=1. Then the isotherms are horizontal and no
convection arises in the cavity. If the thermal conductivity of
the solid is lower than the thermal conductivity of the fluid in
the cavity ���1�, the change of the isotherms near and
within the cavity is opposite to that of the case ��1 �see Fig.
2�b��, and such a change becomes more pronounced when �
increases.

The velocity distribution in a cross section of the cavity is
shown in Fig. 3 for �=0. Plotted in this figure are contours
of the dimensionless longitudinal velocity ux0

divided by
± 1

8 sin � cos � �1−�� / �1+��. There is a counter flow within
the cavity and the contour of zero velocity is at the middle of
the circular section. The velocity profiles on the plane �
=0,� are shown in Fig. 4 for different values of the param-
eter �, which measures the effect of the convective transport.

The effect of the thermal conductivity ratio � on the mag-
nitude of the velocity is notable. If the thermal conductivity
ratio diminishes, the longitudinal velocity increases and
reaches its maximum when �→0. As � augments the longi-
tudinal velocity decreases and when �=1 there is no convec-
tion flow. If ��1, the longitudinal velocity changes its ori-

FIG. 2. Effect of � on the dimensionless temperature distribution scaled with G inside and around a tilted cavity. These slices correspond
to planes �=0 and �=�, when �=� /4.
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entation and its module augments when � increases.
The dimensionless heat flux, ���i /�r�r=1 normal to the

cavity surface can be easily found from Eq. �23�. The local
dimensionless heat flux divided by G cos � is shown in Fig.
5, where the effect of the thermal conductivity ratio is shown
for the limit case of �=0. The heat flux normal to the cavity
surface is maximum when �→0 and diminishes as � in-
creases, so that if �→� then ���i /�r�r=1→0. Figure 2�a�
shows that when �→0 the isotherms experiment an abrupt
change on the surface of the cavity; when �=1 the isotherms
are horizontal but since the r axis is not horizontal then
���i /�r�r=1�0; and when �→� �the solid is a poor conduc-
tor� the isotherms within the cavity become normal to the
cylindrical surface, leading to ���i /�r�r=1=0. See Fig. 2�b�.

Figure 6 shows the dimensionless heat flux normal to the
cavity for different values of � when �=0.1. This figure de-
scribes the effect of the convective transport on the heat
transfer through the cavity. As it could be expected, the heat
transfer for small Rayleigh numbers is slightly larger than

that corresponding to the pure conduction condition where
�=0.

B. Porous medium filled cavity

1. General formulation

The natural convection flow in the fluid-saturated porous
cavity is governed by the continuity equation, the Darcy’s
law, and the energy equation. In the Boussinesq approxima-
tion and nondimensional form, the flow in the cavity obeys

� · u = 0, �26�

u = − � P +
1

G
��i − ���ig, �27�

Ra�u · � ��i = �2�i, �28�

where ig is the unit vector that points the direction of the
gravitational acceleration, u= �ur ,u� ,ux� is the filtration ve-
locity field, P is a modified pressure which takes care of the
hydrostatic term, Ra is the Rayleigh number, the operators �
and �2 are defined in Eqs. �9� and �10�, and the dimension-
less variables are defined as follows:

ur =
ur

*a

�Ra
, u� =

u�
* a

�Ra
, ux =

ux
*a

�Ra
,

P =
P*aK

	��Ra
, Ra =

g
a2K�G*�
��

, �29�

where K is the permeability of the porous medium �in units
of �m2��, and � is its effective thermal diffusivity.

2. Zero Rayleigh number

As before, we get a first approximation considering the
case when Ra→0, then the energy equation in the porous
cavity, Eq. �28�, simplifies to the same one stated by Eq.
�11�, which is coupled with the thermal problem in the rock,
Eq. �3�, by the boundary conditions at the surface of the

FIG. 3. Isovelocity contours on the transversal cross section.
The contours correspond to the dimensionless longitudinal velocity
ux0

scaled with 1
8 sin���cos����1−�� / �1+��.

FIG. 4. Effect of the convection parameter � on the flow veloc-
ity. Velocity profiles shown here correspond to the vertical plane
�=0 and for cases G�0 when �=0.

FIG. 5. Effect of the thermal conductivity ratio � on the local
dimensionless heat flux normal to the cavity surface when �=0.
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cavity which express the continuity of the temperature and
the heat flux. This is exactly the same problem considered as
the first approximation in the case of a fluid-filled cavity.
Consequently, under the assumption that �1, the basic so-
lutions for the temperature distributions around and within
the porous cavity are the same already found as the first
approximation in the previous section, Eqs. �15� and �16�.
Additionally, a basic solution of the filtration velocity and
reduced pressure within the porous cavity can be determined.
Again u� and ur are of the order of �ux and �1, so, the
main flow is one-dimensional along the axis of the cavity,
ux�r ,��, and Eq. �27� reduces to

ux = − �
�P

�x
+

sin �

�G�
��i − ��� . �30�

Carrying the temperature solution of Eq. �16� to Eq. �30�
and using the zero net flux condition, we found that the so-
lution of this problem is of the form P=0, ux= f�r�cos���.
Then, it follows that the basic solution of the filtration veloc-
ity is

ux0
= � sin � cos � cos �

1 − �

1 + �
r . �31�

The minus sign in Eq. �31� is used for positive thermal gra-
dients, G�0, and the plus sign is used for negative thermal
gradients, G�0.

3. Small Rayleigh numbers

The basic solutions can be corrected in order to consider
the effect of a small both nonzero Rayleigh number when
�1. When � is small and Ra�0 Eq. �28� simplifies to the
same problem stated by Eq. �20�. Iteration was used again as
the way of finding a successive approximation that considers
the first-order effects of the convective flow on the tempera-
ture distribution. The basic solutions, Eqs. �16� and �31�,
were used to evaluate the left-hand side of Eq. �20�, and
solve again. Thus, such a equation becomes

�RaG sin2 � cos � cos �
1 − �

1 + �
r = �2�i, �32�

with the boundary conditions that express the continuity of
the temperature and the heat flux at the surface of the cavity.
Using again the aforementioned methodology, the corrected
dimensionless temperature distributions in the solid slab and
within the cylindrical porous cavity respectively are

�s = �s0
+ �

G cos � cos �

4r
� �

1 + �
� , �33�

�i = �i0
+ �

G cos � cos �

8
�1 + 3�

1 + �
r − r3	 , �34�

where � obeys the same definition as in Eq. �24�.
The corrected filtration velocity induced in the cavity by

the temperature distribution �34� is determined by Eq. �30�
with the aforementioned boundary conditions. Again, the so-
lution of this problem is of the form P=0, ux= f�r�cos �. So,
it follows that

ux = ux0
� �

sin � cos � cos �

8
�r3 −

1 + 3�

1 + �
r	 , �35�

where the minus sign is used for positive thermal gradients,
G�0, and the plus sign is used for negative thermal gradi-
ents, G�0.

For small values of �, the dimensionless temperature dis-
tribution inside and around the tilted porous cavity looks
quite similar to plots in Fig. 2.

A typical plot of the dimensionless filtration velocity dis-
tribution within the porous cavity is presented in Fig. 7.
There, the isovelocity contours on the transversal cross-
section corresponding to the limit case of �=0 are shown.
Numerical values of the contours in Fig. 7 correspond to the
dimensionless longitudinal filtration velocity within the cav-

FIG. 6. Effect of the convection parameter � on the local dimen-
sionless heat flux normal to the cavity surface when �=0.1.

FIG. 7. Isovelocity contours within the porous cavity on the
transversal cross section. Shown contours correspond to the dimen-
sionless filtration velocity ux0

scaled with sin���cos����1−�� / �1
+��.
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ity, ux0
, scaled with sin���cos����1−�� / �1+�� when G�0.

Again, in this case there exists a counter flow within the
porous cavity and the contour of zero velocity is at the
middle of the circular section. A comparison between the
basic and corrected solutions for velocity is presented in Fig.
8, where the velocity profiles on planes �=0,� are shown.
As the parameter � considers the effect of the convective
transport, when �=0 the basic solution is recovered. If the
thermal conductivity ratio is low the longitudinal velocity is
maximum, as � increases the longitudinal velocity dimin-
ishes and when �=1 there is no convection flow. If ��1, the
longitudinal velocity changes its direction and its module
augments when � increases.

As in the previous section, the dimensionless heat flux
normal to the porous cavity surface is maximum when �
→0 and diminishes as � increases, so that if �→� then
���i /�r�r=1→0. Figure 9 shows the dimensionless heat flux
normal to the cavity for different values of � and �=0.1. It is
found that the heat transfer for small Rayleigh numbers is
slightly larger to that corresponding to the pure conduction
condition where �=0.

C. Long cavities in finite size rocks

An important feature of the asymptotic limit �→0 already
noted before is that the solution in the major part of the
cavity is independent of the conditions at the ends of the
cavity. This implies that the temperature and velocity distri-
butions computed above can be applied to configurations less
idealized than a long cavity in an unbounded rock. For ex-
ample, the previous results are valid for a cavity at the center
of a horizontal slab of rock of half-thickness H�L sin �. If
the bases of the slab are kept at different constant tempera-
tures T1 and T2=T1+�T, then the vertical thermal gradient is
G*=�T /2H far from the cavity. This fact will be used below
to design a simple experiment that validates the analytical
solution corresponding to a fluid-filled cavity; see next sec-
tion.

IV. EXPERIMENTS FOR A FLUID-FILLED CAVITY

Conclusive velocity measurements during steady-state
convection in circular cylindrical cavities are difficult in the
vertical configurations ��=0� because there exists a critical
Rayleigh number �12,13,15�. In the present case, such a limi-
tation does not occur and a simple experiment has been de-
signed to study convection at low Rayleigh numbers in a
small aspect ratio fluid-filled cavity. A cylindrical hole of
radius a=2.5�10−3 m was drilled in a plexiglas cube of
length side 2H=4.7�10−2 m. Since the theoretical results
we are going to compare with are valid even if H=L sin �
when �1, we made the drill cross the cube from base to
base at an angle �=7� /18. Thus 2L=5�10−2 m and �
=0.1. The inner surface of the cavity was carefully polished
to allow particles visualization and it was filled with silicon
oil. The plexiglas cube was kept between two blocks of coo-
per at different temperatures and its lateral surfaces were
insulated. The thermal conductivity of the plexiglas is ks
=0.184 W m−1 K−1. The properties of the silicon oil are: den-
sity 	=971 kg m−3, thermal conductivity kf =0.155 W m−1

K−1, thermal expansion coefficient 
=0.96�10−3 K−1, ther-
mal diffusivity �=6.65�10−8 m2 s−1, kinematic viscosity �
=1.25�10−2 m2 s−1. The thermal conductivity ratio is �
=0.84. The temperature distribution far from the cavity �on a
surface of the plexiglas cube� was measured by using an
infrared camera ThermaCAM™ PM595. The velocity field
was measured with the particle image velocimetry �PIV�
technique. Since the convective flow was very slow, a con-
ventional digital video camera was sufficient for recording
the particle movement. A laser beam was used as a light
source. In order to improve the particle lighting, the beam
was expanded into a laser sheet by means of a cylindrical
prism. The laser sheet was introduced from the upper side as
it is shown in the sketch of Fig. 10. The temperature of the
upper copper block was 295.15 K and the temperature of the
lower block was 299.15 K. The values of the Rayleigh num-
ber and the aspect ratio, which have been considered small
parameters in the analysis, are Ra=0.037 and �=0.1 in these
experiments. The convection parameter is �=8.1�10−4.

After some hours were allowed to establish the desired
uniform temperature gradient, one insulating wall was re-
moved just during the short time required to measure the

FIG. 8. Effect of the convection parameter � on the filtration
velocity in the porous cavity. Shown velocity profiles correspond to
the vertical plane �=0 and for cases G�0 when �=0.

FIG. 9. Effect of the convection parameter � on the local dimen-
sionless heat flux normal to the porous cavity surface when �=0.1.
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temperature distribution of the solid surface with the infrared
camera. This permitted to check if the vertical temperature
gradient in the solid far from the cavity was attained. Figure
11�a� shows an infrared image showing the temperature dis-
tribution on the surface of the plexiglas cube. Figure 11�b�
shows three temperature profiles which corresponds to the
vertical lines L1, L2, and L3 on Fig. 11�a�. These images
probe the existence of the constant temperature gradient in
the solid far from the cavity.

Some hours after the desired temperature gradient was
established, a small window of the insulation, at the central
part of the cube, was removed to measure the flow through
the particle motion. The digital frames obtained every 10 s

were analyzed by using a TSI™ PIV software. Figure 12
shows the good agreement found between the analytical so-
lution and the experimental data for the time-averaged veloc-
ity of the liquid in the vertical plane �=0,�.

V. CONCLUSIONS

In this work we have analyzed the steady low Rayleigh
number, conjugate natural convection flow in a slim, tilted
cylindrical cavity which is embedded in a solid that is sub-
ject to a uniform vertical temperature gradient. We have
studied the general case where the thermal conductivity of
the rock is different from the thermal conductivity of the
material in the cavity. The temperature distribution of the
rock near the cavity is considerably affected by the sudden
change in the thermal conductivity at the surface of the cav-
ity. The coupled thermal problems within and around the
cavity have been analyzed and the effect of the thermal con-
ductivity ratio on the temperature distributions has been dis-
cussed. Convective flows which arise in the cavity due to
such temperature distributions have been studied for two dif-
ferent cases, a fluid-filled cavity and an isotropic fluid satu-
rated porous cavity. Closed-form analytical solutions have
been obtained for the temperature in the solid and the veloc-
ity, temperature and pressure in the cavity. The solutions de-
pend on the thermal conductivity ratio and the tilting angle
of the cavity. The theoretical results show that if the Ray-
leigh number based on the radius of the cavity is small, then
the fluid flow in cylindrical cavities is a parallel shear flow
similar to the flows in long fractures or long porous layers
�7,8�. It has been found that the temperature distributions are
strongly dependent on the cavity aspect ratio, the tilting
angle and the ratio of thermal conductivities. It is important
to comment that the assumptions considered in the develop-
ment of this work limit the results to ideal impervious ma-
trices. Experiments using thermography and PIV techniques
show a good agreement between the theoretical solution for
the velocity and the experimental data. The present work

FIG. 10. Schematic of the experimental setup.

FIG. 11. �a� Infrared image showing the constant vertical tem-
perature gradient imposed on the experimental model. �b� Vertical
temperature profiles at different locations.

FIG. 12. Comparison between the theoretical fluid velocity pro-
files corresponding to planes �=0 and �=� �from Eq. �25�� and the
experimental data. For this case �=7� /18 rad, Ra=0.037, �=0.1,
�=0.84, and �=8.1�10−4. The error bars indicate an error of
±10%.
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yields useful results for improving the estimation and com-
prehension of transport phenomena of interest for oil and
underground water exploitation from fracture reservoir. Stud-
ies of the stability of the flow when the Rayleigh number
increases are of interest to improve the understanding of this
kind of flow �12�. Work on this line is in progress.
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