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Abstract

Time periodic generation and coalescence of bubbles by injection of a gas at a constant flow rate through an orifi
bottom of a quiescent inviscid liquid is investigated numerically using a potential flow formulation. The volume of the b
is determined for different values of a Weber number and a Bond number. Single bubbling and different regimes of coa
are described by these computations. The numerical results show qualitative agreement with well-known experimental
liquids of low viscosity, suggesting that bubble interaction and coalescence following gas injection is to a large extent an
phenomenon for these liquids, many aspects of which can be accounted for without recourse to wake effects or other
dependent ingredients of some current models.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The generation of bubbles by injection of a gas into a liquid at rest is an important and much studied p
Extensive research has been summarized in a variety of models that address the many facets of the pro
different levels of detail; see Refs. [1–5] for reviews. The conceptually simplest models are based on a balan
forces acting on a bubble of assumed shape (Refs. [6–8], among others). These models clearly show the ex
a regime of low gas flow rate in which the effect of the inertia of the liquid is negligible and the volume of the b
is a constant independent of the gas flow rate, and a regime of high gas flow rate in which the effect of the
tension is negligible and the volume of the bubbles increases as the 6/5 power of the gas flow rate and is independ
of the size of the injection orifice.

The original models of Davidson and Schuler [6] and Ramakrishna et al. [7], which served to establis
results, have been extended to include a variety of effects such as the viscous drag of the bubbles, the flow
viscous wake of the preceding bubble, the momentum flux of the injected gas, and the different shapes and
masses of the bubble at different stages of its growth. Extensions also include a set of ad hoc criteria to accou
interference, collision and coalescence of bubbles [9], which are observed to occur at high flow rates and e
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lead to nonperiodic and chaotic regimes of bubble generation [10]. More sophisticated nonspherical models
postulate equations of motion for each element of the bubble surface, whose shape changes continuously
growth and detachment. These models rely to varying degrees on solutions for the potential flow of the liqu
Oguz and Prosperetti [17] numerically computed this flow using a boundary element method and describe
detail the growth and detachment of a single bubble at the end of a tube in different cases of interest, find
agreement with high speed video visualizations (see also Ref. [18]).

This paper focuses on time periodic bubbling regimes featuring coalescence of two or more bubbles in a
inviscid liquid. Though the bubble generation process ceases to be periodic when the flow rate is increased
ciently high values, these more complex regimes will not be discussed here. Instead, the purpose of the w
examine to what extent coalescence at moderate gas flow rates can be described in the framework of pote
theory. In this respect, the work is an extension of those of Refs. [17] and [18] to include bubble coalescen
main result is that potential flow computations suffice to describe many aspects of coalescence, without re
any wake effect or other effects related to the viscosity of the liquid.

Attention will be restricted to the simplest case of injection of a constant flow rate of a gas through a
circular orifice at the bottom of an inviscid liquid at rest. Fig. 1 is a sketch of the process. The gas will be tre
incompressible, with a density negligibly small compared with the density of the liquid. The only parameters
problem are then the radius of the orifice,a, the density of the liquid,ρ, the liquid–gas surface tension and the con
angle of the surface with the bottom,σ and θ , the gas flow rate,Q (volume of gas injected per unit time), and t
acceleration due to gravity,g. The dimensional parameters can be grouped into a Bond number and a Weber n

B = ρga2

σ
and We = ρQ2

σa3
. (1)

2. Formulation

The flow induced in the liquid by the train of bubbles issuing from the orifice of Fig. 1 is irrotational if the visc
of the liquid is neglected. The velocity potential,ϕ such thatv = ∇ϕ, satisfies the Laplace equation

∇2ϕ = 0 (2)

in the liquid, to be solved with the conditions

Dfi

Dt
= 0, (3)

Dϕ

Dt
= 1

2
|∇ϕ|2 − pgi

− Bx + ∇ · ni (4)

at the surfaces of the bubbles;∂ϕ/∂x = 0 at the horizontal bottom (x = 0); and∇ϕ → 0 at infinity. Herefi(x, t) = 0
is the equation of the surface of thei-th bubble, withi = 0 denoting the bubble growing at the orifice andi = 1,2, . . .

denoting the bubbles detached previously. These surfaces are to be found as part of the solution. Distances
are nondimensionalized with the radius of the orificea and the capillary time(ρa3/σ)1/2. x is the dimensionless heigh
above the bottom,D/Dt = ∂/∂t + v · ∇ is the material derivative at points of the bubble surfaces,ni = ∇fi/|∇fi |,
and pgi

is the pressure of the gas in thei-th bubble referred to the pressure of the liquid at the bottom far f
the orifice and scaled withσ/a. These pressures are functions of time which are determined by the condition
the volume of the growing bubble (i = 0) increases at a constant rate equal to the volume of gas injected pe
time (Q), and the volumes of the detached bubbles (i = 1,2, . . .) do not change with time. In dimensionless variab
these conditions read∫

Σ0

v · n0 dA = We1/2 and
∫

Σi

v · ni dA = 0, i = 1,2, . . . , (5)

where the integrals extend to the surfaces of the bubbles.
An additional condition is needed at the contact line of the growing bubble with the solid. Here the conta

will be taken to coincide with the edge of the orifice when the angle of the liquid–gas surface with the horiz
larger than the contact angle (i.e. when−nx < cosθ , wherenx is the vertical component of the unit normaln0 to
0 0
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Fig. 1. Definition sketch, with details of the contact line attached to the edge of the orifice (b) and spreading on the horizontal bottom

the attached bubble, see Fig. 1), and to spread away from the orifice with the liquid–gas surface making a
contact angle with the solid (−nx0 = cosθ ) otherwise. The two possibilities are sketched in Figs. 1(b) and 1(c)
contact angleθ is a third parameter of the problem, along withB andWe defined in (1).

Time periodic, axisymmetric solutions of the problem have been computed numerically using a standard b
element method to solve the Laplace equation and a second order Runge–Kutta method to advance the mat
at the surfaces of the bubbles and the velocity potential at them according to (3) and (4), withpgi

(t) determined
to satisfy (5) at each time step. The implementation follows that of Oguz and Prosperetti [17]. In particula
splines (for the known quantities) and six-point Gaussian quadrature are used to evaluate the contour integ
the nodes are redistributed at each time step to keep them equispaced. High frequency instabilities are sm
the procedure introduced by Oguz and Prosperetti [19], whereby a new set of nodes is generated at every tim
taking the mid points of the previous set. To reduce the computational burden, the number of bubbles simult
followed is limited to three by removing the uppermost bubble when a new bubble begins to grow at the
Though this is a definite approximation, tests carried out keeping one more bubble have shown that the effe
extra bubble on the growth and detachment of the bubble forming at the orifice, and on its possible coalesce
the bubble immediately above it, does not change the solution qualitatively.

An additional criterion is needed to handle the surface reconnections that occur at the detachment of a
bubble, at the coalescence of two bubbles, and at the piercing of a bubble by a reentrant liquid jet (see belo
a reconnection is assumed to occur when the distance between the two approaching surfaces becomes sm
certain cutoff of the order of the separation between the nodes used to discretize the surfaces. In typical com
the number of nodes on the meridional section of each bubble ranges from 60 to 120 depending on the s
bubble. The typical distance at which reconnection occurs is thus of the order of one hundredth of the siz
largest bubble involved in the process. Smoothing after reconnection is taken care of by the cubic splines us
the rest of the computation [17].

3. Results and discussion

The purpose of the numerical results presented and discussed in this section is to show that the soluti
potential flow problem reproduces well-known features of the periodic generation and coalescence of bu
liquids of low viscosity; see, e.g., Refs. [3,9,10] and references therein. A numerical exploration of the ful
dimensional parameter space of the system has not been attempted. Such exploration would be very de
even with the simple numerical method described above, and probably not very rewarding, because the
experimental investigation of the problem carried out over many years makes unlikely that any new regime
uncovered.
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Fig. 2. Volume of the bubbles scaled witha3 as a function of the dimensionless gas flow rateWe1/2 for B = 0.1 (upper set of curves) andB = 1
(lower set of curves). The solid curves of each set give the final volume of the bubble. The lower dashed curves give the volume of the firs
bubble of a compound bubble, and the intermediate dashed curves give the volume of the first detached couple when double coalesc
The dotted horizontal line is the dimensionless volume 47.497 computed in [20] for quasi-static detachment atB = 0.1. For comparison, notice tha
the Fritz’s dimensionless volume forB = 0.1 isV

F
= 2π/B = 62.83. The dotted lines at the right correspond to volumes proportional toWe3/5.

The final volume of the bubbles is shown in Fig. 2 as a function of the dimensionless flow rateWe1/2 for two
different values of the Bond number,B = 0.1 andB = 1, which correspond to orifices of radiia = 0.85 mm and
2.68 mm, respectively, in pure water. The contact angle was taken asθ = 45◦, though results for other values ofθ are
qualitatively similar.

The results for smallWe1/2 show the well-known tendency of the bubble volume to become independent
flow rate. In this range of small flow rates the bubbles grow quasi-statically and do not interact with each oth
final volume is the maximum volume for which surface tension and buoyancy forces can be in equilibrium [2
small values of the Bond number, the bubbles are nearly spherical and the dimensionless maximum volum
Fritz volumeV

F
= 2π/B [17,21].

The inertia of the liquid comes into play when the first term on the right hand-side of (4) becomes of the o
the buoyancy termBx. CallingR the characteristic size of the bubble at detachment, the expansion of the bubb
to the (dimensionless) gas flow rateWe1/2 implies that∇ϕ = O(We1/2/R2) in the liquid around the bubble, and th
inertia-buoyancy balance|∇ϕ|2 ∼ BR requiresR ∼ (We/B)1/5. Making hereR ∼ V 1/3

F
determines the flow rate a

which the inertia of the liquid begins to matter asWe1/2
c ∼ 1/B1/3, while V ∼ R3 ∼ (We/B)3/5 for We � Wec (see,

e.g., Refs. [6] and [17]). ThisWec determines the lower bound of the high flow rate regime mentioned above and
also the order of the flow rate at which successive bubbles begin to interact. This is thus because the growt
a bubble,tgrowth ∼ R3/We1/2 ∼ We1/10/B3/5, is of the order of the timetrise it takes for the preceding bubble to ri
a distance of the order of its size whenWe is of orderWec or larger (trise is obtained from the acceleration-buoyan
balanceR/t2

rise∼ B, where the dimensionless apparent mass of the bubble is taken to be of orderR3).
What follows refers mostly to the numerical results forB = 0.1. Results for other values of the Bond numb

are similar. Identical bubbles grow and detach periodically at the orifice whenWe1/2 is smaller than about 50. Th
mean distance between bubbles decreases when the Weber number increases, so that the growth of eac
increasingly affected by the bubbles above it. This regime is illustrated in Fig. 3. At all but very small Weber nu
the volume of the bubbles at detachment is larger when the flow induced by the preceding bubbles is taken into
than when it is ignored, as it is done in single bubble computations.

The bubbles begin to couple in pairs whenWe1/2 increases above 50. This regime has been also observed
imentally and was termed the pairing regime by Zhang and Shoji [9]. It is illustrated in Fig. 4 forWe1/2 = 100. The
leading bubble of each couple (labeled 1 in the figure) grows and detaches regularly. The trailing bubble (la
grows in the presence of the leading bubble and takes a prolate shape often noticed in the literature [3,9,
prolate shape can be understood noticing that the leading bubble offers less resistance than the surroundin
the flow induced by the expansion of the trailing bubble at the injection orifice, so that this expansion occurs
entially upwards rather than horizontally. When the trailing bubble detaches, both bubbles rise together and



168 F.J. Higuera, A. Medina / European Journal of Mechanics B/Fluids 25 (2006) 164–171

p
ry time

weeping in

s re-
ntinuous
Fig. 3. Periodic generation of single bubbles forB = 0.1 andWe1/2 = 10 (a), 20 (b), and 40 (c).

Fig. 4. Four snapshots of the generation of a (double) compound bubble forB = 0.1 andWe1/2 = 100. (a)t = 13.77, immediately after the
detachment of the leading bubble; (b)t = 25.34, immediately after the detachment of the trailing bubble; (c)t = 25.64, immediately after breaku
of the thin upward jet; (d)t = 33.68, immediately after coalescence of the two bubbles. Times are nondimensionalized with the capilla
(ρa3/σ)1/2 and measured from the detachment of the bubble preceding bubble 1 in (a). The period of the process is 25.34. Notice the
(c) and the displacement of the contact line away from the orifice in (c) and (d).

each other until they eventually coalesce (bubble 1+ 2). The coalescence of the detached bubbles is not alway
alized in real experiments [9] because non-axisymmetric perturbations may grow and put an end to the co
approximation of the two bubbles.
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Fig. 5. Four snapshots of the generation of a (double) compound bubble forB = 0.1 andWe1/2 = 400. (a)t = 18.49, immediately after the
detachment of the leading bubble; (b)t = 26.91, during the growth of the trailing bubble; (c)t = 30.79, immediately after coalescence of t
leading (detached) and trailing (attached) bubbles; (d)t = 31.75, immediately after detachment of the double bubble. The period of the pr
is 31.56.

The vertical elongation of the trailing bubble increases and the height of coalescence decreases when t
number is increased. As can be seen in Figs. 4(b) and 4(c), the upper part of the trailing bubble enters the co
the base of the leading bubble before the two bubbles coalesce. In lateral views, this may give the impressio
two bubbles have coalesced before they actually do.

Detachment of the trailing bubble and coalescence are almost simultaneous events in a wide range of We
bers. Coalescence precedes detachment of the trailing bubble aboveWe1/2 ≈ 350. This regime is illustrated in Fig.
for We1/2 = 400. The figure may be compared with Fig. 2c of Zhang and Shoji [9], for what these authors
double coalescence regime. It has been observed in the numerical results that coalescence of two bubbles
delayed by the velocity induced by the bubble immediately above the two bubbles that coalesce. Coalesc
detached bubble and an attached bubble occurs atWe1/2 as low as 120 when that upper bubble is not present.
result shows the importance of the previously detached bubbles, which are only approximately represente
three-bubble computations. The result may also have a bearing on the interpretation of the existing dispersi
perimental results (compare for example [9] and [10]), because three-dimensionality and possible breakd
below) limit the time interval during which a given bubble exerts its influence on the bubbles that follow it. I
case, the effect observed here is not due to the wake of the upper bubble, which is not accounted for in our irr
flow computations.

Slightly above the value ofWe1/2 for which the sequence detachment–detachment–coalescence chan
detachment–coalescence–detachment, the presence of the most recently formed double bubble affects t
of the following bubble at the orifice sufficiently for this bubble to detach and rise without pairing with its succ
In the present axisymmetric computations the third bubble ends up coalescing with the double bubble to form
bubble. Again, this is not always the case in real experiments like those of Ref. [9] because the tridimensio
the flow may prevent the second coalescence.

The height at which the second coalescence occurs decreases when the Weber number is further incr
coalescence of a double bubble and a third bubble still attached to the orifice has not been observed nu
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This result is at variance with the experiments of Zhang and Shoji [9], where such regime was observed an
triple bubble formation. The discrepancy is to some extent a matter of detail, because coalescence into triple
occurs in any case, but it may be pointing to an effect of the viscous drag of the double bubble. The drag,
not accounted for here, would delay the rise of the double bubble and allow it to be reached by the following
growing at the orifice.

Results for other values of the Bond number are similar to the ones discussed above forB = 0.1. When the Bond
number is increased, the bubbles become less spherical and detach earlier for a given value ofWe, and the detache
bubbles very soon take a cap shape. Coalescence of detached bubbles begins to occur atWe1/2 ≈ 20 whenB = 1,
which is smaller than the corresponding dimensionless flow rate forB = 0.1 (see Fig. 2). The difference is in lin
with the estimates worked out above. Coalescence and detachment of the trailing bubble become almost sim
events aboveWe1/2 ≈ 60, and two successive coalescences leading to a triple bubble occur aboveWe1/2 ≈ 150.

Breakup of the neck joining the bubble to the orifice is always followed by retraction of the surface and for
of a thin and very fast reentrant jet that shoots across the detached bubble. The tip of the jet breaks into
few tiny drops that hit the ceiling of the bubble (see, e.g., Figs. 4(a)–(c) and 5(d)). These drops can be obs
high speed video visualizations like that of Fig. 6, in which appropriate illumination allows to see through re
detached bubbles. The motion of the drops inside the bubble and their subsequent impact on the ceiling of th
have not been followed in detail numerically. Instead, the drops have been suppressed when the jet breaks up
mass and a fraction of their vertical momentum have been instantaneously added to the liquid around the u
point of the bubble surface. Numerical tests show that the solution does not change much if the mass and m
of these small drops are ignored.

The retraction of the surface immediately after pinchoff is an effect of both the surface tension [22] and th
pressure which appears in the liquid around the breakup point to stop the radially inward flow induced earlie
collapse of the neck. These forces act on the base of the detached bubble, originating the upward moving jet
above, and on the upper surface of the new bubble growing at the orifice, which undergoes one or two oscilla
some cases these oscillations develop into a downward moving jet which enters the injection orifice (as in F
see also [23] and references therein). In the present computations, this phenomenon of weeping has been o
narrow ranges of the flow rate aroundWe1/2 = 100 and 400 forB = 0.1 and aroundWe1/2 = 40 forB = 1.

The thin upward moving jet is followed by a thicker jet when the Weber number is sufficiently high. This th
originates at the concave base of the most recently detached bubble and may develop and pierce the bub
being strangled by the coalescence of a new bubble at its base. The result is a toroidal bubble, which is un
non-axisymmetric perturbations and rapidly breaks down [3]. The computations have been stopped when a je
ceiling of the most recently detached bubble.

Fig. 6. Image from a high speed video showing a small drop breaking off the reentrant jet at the base of a recently detached bubble and a
that has already crossed the bubble and is impacting on its upper surface. The asymmetry of the bubble and the jet is due to a small irr
the injection orifice. The orifice radius and gas flow rate area = 0.5 mm andQ = 35 lit/h, leading toB = 0.03 andWe = 1.04× 104 if the surface
tension of pure water is assumed.
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Three or more consecutive coalescences, leading to compound bubbles made of four or more elements,
reported in [9] and [10], for example, but have not been observed numerically before the solution ceases to be
for the reason discussed in the preceding paragraph.

4. Conclusions

Numerical computations have been carried out of the axisymmetric, irrotational, time periodic flow induc
quiescent strictly inviscid liquid by the growth, detachment and coalescence of bubbles due to the injection o
stant gas flow rate through a horizontal submerged orifice. The results show that this simple potential flow form
may qualitatively describe many aspects of the well-known transition from quasi-static generation of indep
constant volume bubbles at low Weber numbers to inertia and buoyancy controlled growth and interaction of
at moderately high Weber numbers. The simple computations presented here reproduce the single and doub
cences that occur when the Weber number is increased, and that lead to compound bubbles. A vigorous re
is seen to cross the compound bubble and impact on its ceiling when the Weber number is high, probably ca
breakdown of the bubble and marking the end of the regime of periodic bubble generation. The critical Web
ber at which coalescence first occurs decreases when the Bond number is increased. Other experimentally
phenomena, such as tiny drops shooting across the bubbles, weeping, and the motion of the contact line a
the orifice are also observed in these computations.

References

[1] R. Kumar, N.R. Kuloor, The formation of bubbles and drops, Adv. Chem. Engrg. 8 (1970) 255.
[2] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic, New York, 1978.
[3] N. Räbiger, A. Vogelpohl, Bubble formation and its movement in Newtonian and non-Newtonian liquids, in: N.P. Cheremisinoff (Ed.

clopedia of Fluid Mechanics, vol. 3, Gulf Publishing Company, Houston, 1986 (Chapter 4).
[4] H. Tsuge, Hydrodynamics of bubble formation from submerged orifices, in: N.P. Cheremisinoff (Ed.), Encyclopedia of Fluid Me

vol. 3, Gulf Publishing Company, Houston, 1986 (Chapter 9).
[5] S.S. Sadhal, P.S. Ayyaswamy, J.N. Chung, Transport Phenomena with Drops and Bubbles, Springer, 1997 (Chapter 7).
[6] J.F. Davidson, B.O.G. Schuler, Bubble formation at an orifice in an inviscid liquid, Trans. Inst. Chem. Engrg. 38 (1960) 335.
[7] S. Ramakrishna, R. Kumar, N.R. Kuloor, Studies in bubble formation – I: Bubble formation under constant flow conditions, Chem

Sci. 24 (1968) 731.
[8] S.C. Chuang, V.W. Goldschmidt, Bubble formation due to a submerged capillary tube in quiescent and coflowing streams, ASME

Engrg. 92 (1970) 705.
[9] L. Zhang, M. Shoji, Aperiodic bubble formation from a submerged orifice, Chem. Engrg. Sci. 56 (2001) 5371.

[10] T.G. Leighton, K.J. Fagan, J.E. Field, Acoustic and photographic studies of injected bubbles, Eur. J. Phys. 12 (1991) 77.
[11] A. Marmur, E. Rubin, A theoretical model for bubble formation at an orifice submerged in an inviscid liquid, Chem. Engrg. Sci. 31

453.
[12] W.V. Pinczewski, The formation and growth of bubbles at a submerged orifice, Chem. Engrg. Sci. 36 (1981) 453.
[13] R.B.H. Tan, I.J. Harris, A model for non-spherical bubble growth at a single orifice, Chem. Engrg. Sci. 41 (1986) 3175.
[14] J.-L. Liow, N.B. Gray, A model of bubble growth in wetting and non-wetting liquids, Chem. Engrg. Sci. 43 (1988) 3129.
[15] K. Terasaka, H. Tsuge, Bubble formation under constant-flow conditions, Chem. Engrg. Sci. 48 (1993) 3417.
[16] A.E. Wraith, T. Kakutani, The pressure beneath a growing rising bubble, Chem. Engrg. Sci. 29 (1974) 1.
[17] H.N. Oguz, A. Prosperetti, Dynamics of bubble growth and detachment from a needle, J. Fluid Mech. 257 (1993) 111.
[18] H.N. Oguz, J. Zeng, Axisymmetric and three-dimensional boundary integral simulations of bubble growth from an underwater orifi

Anal. Boundary Elements 19 (1997) 319.
[19] H.N. Oguz, A. Prosperetti, Bubble entrainment by the impact of drops on liquid surfaces, J. Fluid Mech. 219 (1990) 143.
[20] M.S. Longuet-Higgins, B.R. Kerman, K. Lunde, The release of air bubbles from an underwater nozzle, J. Fluid Mech. 230 (1991) 36
[21] W. Fritz, Berechnung des maximalen Volumens von Dampfblasen, Phys. Z. 36 (1935) 379.
[22] D. Leppinen, J.R. Lister, Capillary pinch-off in inviscid fluids, Phys. Fluids 15 (2003) 568.
[23] W. Zhang, R.B.H. Tan, A model for bubble formation and weeping at a submerged orifice, Chem. Engrg. Sci. 55 (2000) 6243.


