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The penetration of a wetting liquid in the narrow gap between two vertical plates making a small
angle is analyzed in the framework of the lubrication approximation. At the beginning of the
process, the liquid rises independently at different distances from the line of intersection of the
plates except in a small region around this line where the effect of the gravity is negligible. The
maximum height of the liquid initially increases as the cubic root of time and is attained at a point
that reaches the line of intersection only after a certain time. At later times, the motion of the liquid
is confined to a thin layer around the line of intersection whose height increases as the cubic root of
time and whose thickness decreases as the inverse of the cubic root of time. The evolution of the
liquid surface is computed numerically and compared with the results of a simple experiment.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3000425�

I. INTRODUCTION

Capillary flows in confined liquid films arise in numer-
ous contexts, including flows in porous media, microfluidics,
fluid management in low gravity environments, and the wet-
ting and spreading of liquids on irregular surfaces; see, e.g.,
Kistler1 and Steen.2 Interior corners in the solid wall of a
channel or a container partially filled with a wetting liquid
enhance capillary effects by increasing the local curvature of
the liquid surface in order to satisfy the contact angle wetting
condition. As early as 1712, Taylor3 and Hauksbee4 reported
investigations on the shape of the equilibrium meniscus in
the gap between two vertical plates making a small angle,
showing that the equilibrium contact line is a hyperbola.
Static menisci at interior corners have been studied subse-
quently by Concus and Finn,5 Mason and Morrow,6

Langbein,7 and Wong et al.,8 among others.
Analysis of the imbibition of a wetting liquid in the cor-

ners of a noncircular capillary tube is of interest to ascertain
the mechanisms of spreading, the capillary instability leading
to snap off of threads of a nonwetting phase, and the dis-
placement and trapping of this phase. Applications range
from wetting of powders9 to oil recovery10 and oil spills in
unsaturated soils11 and from biophysics12–15 to
environmental16 and agriculture17 problems. Lenormand and
Zarcone18 computed the flow along a corner using a hydrau-
lic diameter approximation. Ayyaswamy et al.19 and Ranso-
hoff and Radke20 solved the problem under the assumptions
that the flow of the advancing liquid is quasiunidirectional
and with negligible inertial effects. The evolution of the liq-
uid obeys then a nonlinear convection-diffusion equation
whose coefficients depend on a friction factor or dimension-
less flow resistance that measures the hydraulic resistance of
the walls to the flow and has been expressed and computed
in various manners. Dong and Chatzis21 used this formula-
tion to analyze the imbibition of a liquid in the corners of a
capillary tube of square cross section and found a similarity
solution of the governing equation applicable to their prob-

lem. Other solutions and comparisons to drop tower low
gravity experiments have been reported by Weislogel and
Lichter.22,23 Modifications of the governing equation to ac-
count for a gravity force opposing spreading have been dis-
cussed by Verbist et al.24 and Kovscek and Radke.25 Ma
et al.26 first tried to account for a liquid-gas frictional inter-
action in their analysis of the flow in triangular micro-
grooves, a work that was continued and applied to the analy-
sis of the heat transfer in microheat pipes in Refs. 27–30 and
complemented and improved by Su and Lai,31 who removed
an arbitrary assumption on the velocity at the surface origi-
nally made to simplify the computation of the friction factor.
Kolb and Cerro32 and Bico and Quéré33 investigated the mo-
tion of long bubbles in angular capillary tubes. Weislogel34

provided a collection of solutions for capillary driven flows
in interior corners of interest for low gravity applications.
See Refs. 35–37 for other investigations on capillary flows in
V-shaped grooves.

The simple configuration of the pioneering works of
Taylor3 and Hauksbee,4 with two vertical plates making a
small angle, is revisited in this paper to analyze the capillary
rise of a viscous wetting liquid in the narrow gap between
the plates. A free boundary problem is formulated in the
framework of the lubrication approximation for the flow in
the gap, assuming that inertial effects are negligible. A self-
similar solution of this problem is computed in the absence
of gravity, which is applicable to the early stages of the pro-
cess in a region around the edge of the gap where the two
plates intersect. This solution predicts that the height of the
liquid is minimum at the edge and increases linearly with
time. The effect of the gravity is first felt far from the edge,
leading to a distribution of liquid height that reaches a maxi-
mum at a certain point and tends toward the equilibrium
hyperbola further away from the edge. The point of maxi-
mum height shifts toward the edge as time increases and
reaches the edge in a finite time. A thin layer develops
around the edge at later times, whose evolution can be de-
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scribed by a convection-diffusion equation similar to that
used in the analysis of the flow in corners of nonsmall angles
but with closed form coefficients. The numerical results are
compared with experiments carried out with silicone oil ris-
ing between two glass plates.

II. FORMULATION

The wedge-shaped gap between two vertical plates inter-
secting at an angle ��1 is initially empty. At a certain time,
the lower edges of the plates are brought in contact with a
liquid of density �, viscosity �, and surface tension �. The
liquid wets the plates with a contact angle ��� /2 and there-
fore rises between the plates by capillary action,5 as sketched
in Fig. 1. The ratio of the two principal curvatures of the free
surface of the liquid between the plates is small, of the order
of �. The normal section of maximum curvature, by a plane
nearly normal to the plates, is approximately an arc of circle
of radius �x /2 cos �, where x is the distance to the line of
intersection of the plates �see sketch on the right-hand side of
Fig. 1�. The pressure jump across the surface is approxi-
mately 	ps=2� cos � /�x. At equilibrium, the height He�x�
of the meniscus above the level of the outer liquid is deter-
mined by the balance 	ps=�gHe, where g is the acceleration
due to gravity. This balance gives the rectangular
hyperbola3,4

He =
Hc

2

x
with Hc = �2� cos �

�g�
�1/2

. �1�

This well known result needs be corrected at distances from
the line of intersection of the plates of the order of Hc /�1/2,
where the elevation of the liquid surface and the distance
between the plates are of the order of the capillary length of
the liquid, �1/2Hc, and the normal section of maximum cur-
vature ceases to be an arc of circle. The solution in this far
region will not be discussed here.

The rise of the meniscus toward its equilibrium position
�1� will be analyzed in what follows for x=O�Hc� assuming
that the motion of the liquid between the plates is dominated
by viscosity. Under the action of the capillary depression
	ps, the characteristic velocity of the liquid is then vc

��gHc
2�2 /� from the balance of pressure and viscous forces

	ps /Hc��vc / ��Hc�2. The effective Reynolds number mea-
suring the effect of the inertia of the liquid �see, e.g., Ref. 38�

is Re=�2�vcHc /���5/2�1/2�3/2 cos3/2 � /g1/2�2, which is as-
sumed to be small. Lubrication theory38 can then be used to
compute the distribution of modified pressure P and the evo-
lution of the meniscus. Here P= p+�gz, where p is the pres-
sure of the liquid referred to the pressure of the surrounding
gas �pa� and z is the vertical distance from the level of the
outer liquid. The intersection of the liquid surface with the
symmetry plane bisecting the wedge is sought in the form
z=H�x , t�. Scaling x, z, and H with Hc, P with �gHc, and the
time with tc=12� /�gHc�

2, the governing equations take the
form

�

�x
�x3�P

�x
� + x3�2P

�z2 = 0 in 0 � z � H�x,t�, x 
 0,

�2�

P = −
1

x
+ H �3a�

and

�H

�t
− x2�P

�x

�H

�x
+ x2�P

�z
= 0 �3b�

at z=H�x , t�,

P = 0 at z = 0, �4�

x3�P

�x
→ 0 for x → 0, �5�

H → 0 for x → � . �6�

Equation �2� is the Reynolds equation of lubrication theory
for the modified pressure; i.e., the continuity equation � ·q
=0 for the Poiseuille flux q=−x3� P. Equation �3a� ex-
presses the condition that the modified pressure at the surface
is the sum of the capillary depression −	ps mentioned above,
which is −1 /x in dimensionless variables, plus the gravity
term H. Condition �3b� is an evolution equation for the me-
niscus, which is a material surface advancing with the width-
averaged velocity of the local Poiseuille flow v=q /x
=−x2� P. Condition �5� imposes that the flux through the
edge of the wedge �x=0� is zero. Problems �2�, �3a�, �3b�,
and �4�–�6� can be solved numerically for a given initial
condition H�x ,0�=Hi�x� to describe the evolution toward the
equilibrium solution P=0, H=He�x�=1 /x.

III. ANALYSIS

If Hi�x�=0, then the effect of the gravity is negligible in
an early stage of the evolution in which H�1 /x. The solu-
tion in the absence of gravity is self-similar, of the form

P =
1

t
P̂�x̂, ẑ�, H = tĤ�x̂�, with x̂ =

x

t
, ẑ =

z

t
�7�

and

�

� x̂
�x̂3� P̂

� x̂
� + x̂3�2P̂

� ẑ2 = 0 in 0 � ẑ � Ĥ�x̂�, x̂ 
 0;

�8�

ϕ

ϕs

H(0, t)

x

r

H(0, t) − z

z

α

H(x, t)

pagas

g
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αx

x
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FIG. 1. �Color online� Definition sketch.
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P̂ = −
1

x̂
�9a�

and

Ĥ − x̂Ĥ� − x̂2� P̂

� x̂
Ĥ� + x̂2� P̂

� ẑ
= 0 �9b�

at ẑ= Ĥ;

P̂ = 0 at ẑ = 0 �10a�

and

x̂3� P̂

� x̂
→ 0 for x̂ → 0, �10b�

where Ĥ�=dĤ /dx̂. A numerical solution of Eqs. �8�, �9a�,
�9b�, �10a�, and �10b� has been computed using finite differ-

ences in the plane of the variables x̂, �̂= ẑ / Ĥ. The scaled

height Ĥ�x̂� and some isobars are shown in Fig. 2.
The point where the surface intersects the edge x̂=0 is a

singular point of Eqs. �8� and �9�. The form of the solution in

the vicinity of this point is as follows. Both Ĥ�x̂� and Ĥ��x̂�
tend to finite values Ĥ0 and Ĥ0� for x̂→0. The pressure for

�x̂ , Ĥ0− ẑ��1 is of the form P̂= f�� / r̂, where

r̂= �x̂2+ �ẑ− Ĥ0�2�1/2 and =arctan x̂ / �Ĥ0− ẑ�; see sketch on
the left-hand side of Fig. 1. Here f�� satisfies the equation
�sin3 f��−2 sin3 f =0 �from Eq. �8�� with the boundary

conditions f�s�=−1 /sin s and Ĥ0+sin sf��s�=0 at the
surface �from Eqs. �9a� and �9b��, where =s=� /2

+arctan Ĥ0�, and a condition of regularity at =0 to satisfy
Eq. �10b�. This latter condition rules out the singular solution
of the equation for f , leaving only the regular solution �pro-
portional to f �1+2 /4+¯ for �1� to satisfy the two
boundary conditions at the surface. The whole local solution,

including f�� and Ĥ0, is therefore determined in terms of s

�hence Ĥ0�� only. The relation between Ĥ0 and Ĥ0� determined

by this local analysis is shown in Fig. 3. The value of Ĥ0

must be independently determined from the numerical solu-
tion of Eqs. �8�, �9a�, �9b�, �10a�, and �10b� shown in Fig. 2.

A finite Ĥ0 means that the height of the surface at the edge
increases proportionally to time in the absence of gravity,

which is in agreement with the results of Fig. 5�b� below for
small times. The local analysis carried out here is also appli-
cable to problem �2�–�6� for �x ,H�0, t�−z��1 and any t be-
cause the effect of gravity �last term on the right-hand side of
Eq. �3a�� is negligible for x�1. The result of Fig. 3 is still

valid with �H /�t and �H /�x at x=0 playing the roles of Ĥ

and Ĥ�. Figure 5�b� below shows that �H /�t �x=0 decreases
with time during the rise of the liquid, and so does
�H /�x �x=0, which changes from positive to negative at a cer-
tain time �see Fig. 5�a��.

For x̂�1, Eq. �8� reduces to �2P̂ /�ẑ2	0, whose solution

with the boundary conditions �9a� and �10a� is P̂=−ẑ / �x̂Ĥ�.
Carrying this pressure to Eq. �9b�, the term −x̂2Ĥ�� P̂ / x̂ can
be seen to be negligible, and the balance of the other three

terms gives Ĥ= �2x̂�1/2. This result reads as H= �2xt�1/2 in the
original variables, which amounts to Washburn’s39 classical
square root penetration law in a channel of width equal to the
local distance between the plates. In the absence of gravity,
the penetration rate increases with the square root of the
distance to the edge x because the decrease in the hydraulic
resistance with increasing x overcomes the decrease in the
capillary depression at the surface.

As time goes on, gravity first checks the H��2xt�1/2

penetration law at large distances from the edge. The condi-
tion �2xt�1/2�He=1 /x gives the characteristic time of rise of
the meniscus to its equilibrium position as t�1 /x3, so that
the meniscus may be nearly at equilibrium far from the edge
when it is still rising nearer to the edge.

We turn now to problem �2�–�6�. Since H�1 for small
times, Eq. �2� can be approximated by �2P /�z2=0 for t�1 at
any x�H. Proceeding as before but with the last term of Eq.
�3a� retained, Eq. �3b� can be seen to reduce to �H /�t
= �1−xH�x /H, which means that the meniscus rises indepen-
dently for different values of x. The solution of this equation
with the initial condition Hi=0 is

xH + ln�1 − xH� = − x3t , �11�

which is shown in Fig. 4 for different values of t. The height
H�x , t� has a maximum, Hmax	0.882t1/3, at x=xmax

	0.731 / t1/3.
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FIG. 2. Scaled height as a function of the scaled distance to the edge,

ẑ= Ĥ�x̂� �solid, thick�. The dashed curve is the asymptotic solution for large

x̂: Ĥ= �2x̂�1/2. The thin contours are isobars P̂=−2, −1, −0.5, −0.2, and
−0.08, from top to bottom.
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FIG. 3. Relation between Ĥ0 and Ĥ0� �or between �H /�t and �H /�x at x=0�.
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A numerical solution of Eqs. �2�, �3a�, �3b�, and �4�–�6�
has been computed using Eq. �11� as an initial condition at a
small value of t. The distribution of H�x , t� is shown in Fig.
5�a� for various times. As can be seen, the maximum height
keeps increasing with time and shifting toward the edge,
which it reaches in a finite time. The subsequent evolution
leads to a layer of liquid around the edge which continuously
elongates and thins, and leaves the meniscus nearly at equi-
librium outside of this layer.

To describe the asymptotic solution in the thin layer for
large values of the dimensionless time, it is convenient to
seek the position of the meniscus in the alternative form x
=G�z , t�. Conditions �3� become

P = −
1

G
+ z �12a�

and

�G

�t
+ vz

�G

�z
− vx = 0 �12b�

at x=G�z , t�, where vx=qx /x=−x2� P /�x and vz=qz /x
=−x2� P /�z. Equation �2� requires that P= P�z , t� in first ap-
proximation in the thin layer. Condition �12a� then gives
P�z , t�=−1 /G�z , t�+z, and therefore, qz=−x3� P /�z
=−x3�1+G−2�G /�z�. Equation �2� written in the form
�qx /�x+�qz /�z=0 can now be integrated with the boundary
condition �5� to give

qx = − 

0

x �qz

�z
dx =

x4

4

�

�z
� 1

G2

�G

�z
� .

Using these qx and qz to evaluate vx and vz in Eq. �12b�, this
equation becomes

�G

�t
− �G2 +

1

2

�G

�z
� �G

�z
=

1

4
G

�2G

�z2 . �13�

Equations similar to Eq. �13� have been found in a number of
related problems �see, e.g., Refs. 19–31 and references
therein�. Equation �13� admits solutions with G=0 beyond

an advancing front. For large t, these solutions tend to be-

come self-similar, of the form G= G̃�z̃� / t1/3 with z̃=z / t1/3 and
1
4G̃G̃�+ �G̃2+ 1

2G̃��G̃�+ 1
3 �z̃G̃��=0. This equation for G̃ must

be solved with the conditions G̃→1 / z̃ for z̃→0 and G̃
= 2

3 z̃0�z̃0− z̃� for 0� �z̃0− z̃��1 at a certain z0. From its nu-
merical solution, z̃0	1.81. The t1/3 elevation of the meniscus
at the edge predicted by the self-similar solution is realized
by the numerical solution of Fig. 5�b� for large values of t.

IV. EXPERIMENT

Two square plates of glass 20�20 cm2 in size are set at
an angle of 1.25° by keeping them in contact along a vertical
edge and introducing spacers at the opposite edge. The lower
edges of the plates are gently introduced in silicone oil with
viscosity of 460 cP �density �=971 kg m−3, surface tension
�=2.1�10−2 N m−1, Dow Corning� which wets the plates
and rises between them. The meniscus is illuminated from a
side of the plates through a translucent screen and photo-
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FIG. 4. Height of the liquid as a function of x for t=0.01, 0.04, 0.1, 0.2, 0.4,
and 0.8, increasing from bottom to top, from the solution �11� for small
times.
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FIG. 5. �a� Distributions of height at t=0.02, 0.252, 0.802, 2.302, 3.8, and
12.8, increasing from bottom to top. The dashed curve is the equilibrium
distribution He=1 /x. �b� Height at the edge �H0=H�x=0, t�, solid�, maxi-
mum height �Hmax, dashed�, and position of maximum height �xmax, dot-
dashed� as functions of time. The dotted curve is the asymptote H
=1.81t1/3. Circles are experimental values of H0.
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graphed with a camera set opposite to the light source at the
other side of the plates. The camera is periodically triggered
at a selected frequency. The spacers are disks of known size
and thickness, whose images serve to fix the length scale on
the photographs.

Following Ferguson and Vogel40 and Lopez de Ramos
and Cerro,41 the value of Hc in Eq. �1� is determined directly
from the final equilibrium meniscus as the common value of
the height and the distance to the edge of the point on the
hyperbola where its slope is equal to unity. This procedure
does not require an independent determination of the contact
angle �. We find Hc	14.14 mm from the photographs for

very large times. Using this Hc, the value of tc defined above
Eq. �2� is tc	86.10 s for the experiment.

Figure 6 shows a sequence of distributions of the liquid
height extracted from the photographs at different instants of
time. Distances and times are nondimensionalized with Hc

and tc. The height of the liquid is maximum at a point away
from the common edge of the plates during a first stage of
the process. With time, the maximum height increases and
the point where the maximum is attained approaches the
edge. In the second stage, the maximum height occurs at the
edge and keeps increasing with time, while the height away
from the edge stabilizes at the equilibrium hyperbola. The
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FIG. 6. Experimental distributions of
dimensionless height at t=0.04 �a�,
0.22 �b�, 0.72 �c�, 2.08 �d�, 6.33 �e�,
and 12.70 �f�. The dashed curves are
numerical results for the same dimen-
sionless times. In each panel, the dot-
ted curve shows the equilibrium distri-
bution He=1 /x.
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circles in Fig. 5�b� show the measured height at the edge as
a function of time. As can be seen, the numerical results of
Sec. III are in good agreement with the experimental data of
Figs. 5�b� and 6. The largest discrepancies occur at the be-
ginning of the process �Fig. 6�a��, which may be due to sev-
eral reasons. First, the lubrication approximation is not valid
at these small times because the height of the liquid is not
large compared to the local spacing of the plates. Second, the
accuracy of the measurements on the photographs is low
when the image of the liquid surface between the plates is
close to the dark image of the menisci at the outer sides of
the plates. In addition, the rise of the liquid may begin at
slightly different times at different points along the lower
edges depending on how the plates are introduced in the
liquid.

V. CONCLUSIONS

The time evolution of the meniscus of a wetting liquid in
the gap between two vertical plates making a small angle has
been computed assuming that the motion of the liquid is
dominated by viscous forces. In the first stage of evolution,
the effect of the gravity is negligible in a region around the
edge of the gap where the height of the liquid increases pro-
portionally to time. The maximum height, however, is pro-
portional to the cubic root of time and is attained outside of
this region, at a distance from the edge inversely propor-
tional to the cubic root of time. The point of maximum
height reaches the edge at a finite time during the evolution.
At later times, a thin layer develops around the edge where
the flow is nearly vertical and outside which the meniscus is
nearly at equilibrium. The layer becomes self-similar for
large times, with a height that increases as the cubic root of
time and a thickness that decreases as the inverse of this
quantity. A simple experiment has been conducted in which
the rise of silicone oil between two glass plates is photo-
graphically recorded. The computed evolution is in good
agreement with the experimental results.
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