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The effect of partial confinement on the shape and volume of bubbles generated by injection of a

constant flow rate of gas into a very viscous liquid is studied numerically and experimentally.

Numerical solutions of the Stokes equations for the liquid and the evolution equation for the

surface of a bubble, and experiments with two different liquids, show that cylindrical and conical

walls concentric with a gas injection orifice in the horizontal bottom of the liquid may strongly

affect the shape and volume of the bubbles, and can be used to control the size of the generated

bubbles without changing the flow rate of gas. A well-known scaling law for the volume of the

bubbles generated by injection of a high flow rate of gas in a very viscous unconfined liquid is

extended to take into account the presence of cylindrical or conical walls around the injection

orifice. VC 2011 American Institute of Physics. [doi:10.1063/1.3643248]

I. INTRODUCTION

The growth and detachment of bubbles generated by

the continuous injection of gas into a quiescent liquid has

been very much studied in conditions where the viscosity of

the liquid plays no important role.1–8 Results of these stud-

ies are of interest in metallurgical and chemical industries,

for example, where liquids of low viscosity, such as liquid

metals and aqueous solutions, need to be handled. Bubbles

in these liquids can be used to modify the concentrations of

different substances and promote chemical reactions

between them, to clean liquids from impurities captured by

adhesion or diffusion processes, and for many other

purposes.2

The generation and dynamics of bubbles in very viscous

liquids is also of interest but has not been so much studied.

Thus, while many aspects of the dynamics of bubbles in

unbounded viscous liquids are well understood,9–14 the for-

mation and detachment of bubbles in confined systems has

received less attention.15–18 Bubbles in very viscous liquids

are commonly found when dealing with polymers in their

liquid phases, in the flows of lava, and in processes of oil

extraction from production pipelines, among others. The last

cited example has motivated the present work, which sprang

from interest in the so-called gas lift technique of enhanced

oil recovery,19 where bubbles formed by injecting gas in oil

extraction pipes help pumping the oil.

Scaling laws13–15 show that the volume of the bubbles

generated by injecting a high flow rate of gas into a very vis-

cous liquid increases as the power 3/4 of the flow rate and is

independent of the diameter of the injection orifice. The sim-

plest way to control the size of the bubbles in a given liquid

is, therefore, to act on the flow rate of gas. This possibility,

however, is limited in the application at hand, because the

flow rate of gas to be injected in the confined space of an

extraction pipe is often determined by other requirements

of the gas lift technique. The limitation poses a problem to

control the size of the bubbles and brings to the front ele-

ments of the generation process such as the viscous drag of

the bubbles13 and the shear stress in the vicinity of the

walls,15,17,18 which are disregarded in inviscid analyses but

offer a clue to the solution of the size-control problem.

In this paper, we show that the shape of the tube in the

vicinity of the injection orifice, or the use of properly shaped

injection nozzles, may cause substantial distortion of the

growing bubbles and modify their volume at detachment. In

our analysis, a constant flow rate of gas is injected through a

circular orifice in the horizontal base a container filled with a

very viscous liquid, and the space where the bubbles grow is

partially confined by surrounding the orifice with a vertical

cylindrical wall or an inverted vertical cone. The extent of

the confinement can be gradually increased by decreasing

the radius of the cylinder or the angle of the cone, which

allows to quantify the effect of the wall on the evolution and

size of the bubbles. This size is determined numerically and

experimentally, and scaling laws that are extensions of well-

known laws for unconfined liquids are proposed and

validated.

II. EQUATIONS FOR BUBBLES GROWING
IN A CONFINED LIQUID

A constant flow rate Q of an incompressible gas of neg-

ligible density and viscosity is injected into a liquid of den-

sity q and viscosity l initially at rest in a vertical tube under

the action of the gravity. The gas is injected through a circu-

lar orifice of radius a at the center of the base, of radius R*,

of the tube. The lateral wall of the tube may be cylindrical or

conical, making an angle a to the vertical, as sketched in

Fig. 1. The height of the tube is H* and its upper end is open

to an infinite expanse of the same liquid, as sketched in the

upper part of Fig. 1(a) for a cylindrical tube.

The gas accumulates in a bubble attached to the base of

the tube. The volume of this bubble increases with time until
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it detaches and begins to ascend in the liquid, being replaced

by a new attached bubble. The effect of the inertia is assumed

to be negligible in the motion induced in the liquid by the

growth and displacement of the bubbles. A sufficient condi-

tion for the effect of the inertia of the liquid to be negligible is

that Re ¼ qQ=lRb � 1, where Rb is the characteristic radius

of the detaching bubble or of its upper cap, which is to be

determined (see Refs. 13, 14, and 18 and Sec. IV below).

Let f(x,t)¼ 0 be the equation of the surface of the bubble

attached to the base of the tube, with f> 0 in the liquid. The

surface of the bubble is assumed to be axisymmetric and

x¼ (x,r), where x is the vertical distance measured upward

from the base of the tube and r is the distance to its symme-

try axis. Scaling distances with a and times with the viscous

capillary time la/r, where r is the surface tension of the liq-

uid, the equations governing the evolution of the liquid and

the surface of the bubble are

$ � v ¼ 0; (1)

0 ¼ �$pþ $2v� B i (2)

in the liquid, f(x,t)> 0,

Df

Dt
¼ 0; (3)

� pnþ s0 � n ¼ ð$ � n� pgÞ n (4)

at the surface of the bubble, f(x,t)¼ 0,

v ¼ 0 (5)

at the solid surfaces bounding the liquid, and

$ðpþ B xÞ ¼ 0 (6)

in the upper expanse of liquid far above the tube.

Here, pg(t) is the uniform pressure of the gas in the bub-

ble, which is to be found using the condition that the volume

V of the bubble increases linearly with time at a rate equal to

Q. In dimensionless variables,

dV

dt
¼ Ca: (7)

The contact line of the bubble with the base of the tube is a

circle whose radius is determined by the condition that the

angle between the surface of the bubble and the base be

equal to the contact angle of the liquid with the base h, which

is assumed to be a constant.

Problem (1)–(7) contains the six dimensionless

parameters

B ¼ qga2

r
; Ca ¼ lQ

ra2
; R ¼ R�

a
; H ¼ H�

a
; h; a;

(8)

which are a Bond number, a capillary number, the dimen-

sionless radius of the base and height of the tube, the contact

angle of the liquid with the base, and the semi-angle of the

conical tube.

In these equations, i is a unit vector pointing upward;

D=Dt ¼ @=@tþ v � $ is the material derivative at points of

the surface of the bubble; n ¼ $f= $fj j is a unit vector nor-

mal to the surface of the bubble; and s0 ¼ $vþ $vð ÞT is the

dimensionless viscous stress tensor.

In what follows H is given a large value (H¼ 100 in the

computations discussed below) to ensure that this parameter

has no effect on the growth and detachment of the bubble.

Numerical tests show that the only effect of increasing H fur-

ther is to increase the pressure of the gas and the liquid

around the bubble (pg and p) by a constant amount propor-

tional to H.

III. NUMERICAL METHODS

A boundary elements method is used to solve the Stokes

equations (1) and (2) with the boundary conditions (4)–(6)

and a second order Runge-Kutta method is used to calculate

the evolution of free surface f given by Eq. (3).

Let us assume first, for simplicity, that the contact line is

pinned to the edge of the orifice at the base of the tube. The

case of a moving contact line is discussed below. The bound-

ary integral equations for axisymmetric Stokes flow can be

found in Refs. 20 and 21. Elements of Pozrikidis’ BEMLIB

library21 have been used. In the present problem, the liquid

is bounded by the surface of the bubble, which is a material

surface, the solid surfaces of the tube and the bottom of the

upper expanse of liquid, and a surface at infinity in this upper

expanse. The velocity and stress tensor decrease in the upper

expanse as the inverse of the square and the inverse of the

cube of the distance to the tube, respectively (see, e.g.,

Ref. 22), which makes the integrals over the surface at infin-

ity null. At any instant of time, the stress at the surface of the

FIG. 1. Schematic of a bubble attached to the base of a cylindrical (a) or a

conical (b) tube filled with a very viscous liquid.
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bubble is known up to the constant pg in Eq. (4), whose com-

putation is described below, and the velocity is known at the

solid surfaces. The integral equations can, therefore, be

solved to compute the velocity of the liquid at the surface of

the bubble and the stress at the solid surface. The surface of

the bubble can then be advanced a time step, and the

unknown pg is determined to satisfy Eq. (7).

The contour of the bubble is discretized with a finite

number of nodes which move as material particles. The con-

tour of the solid surfaces is discretized with a finite number

of nonuniformly spaced fixed nodes. The spacing of the

nodes at the bottom of the upper expanse increases algebrai-

cally as r ! 1. The nodes at the surface of the bubble are

redistributed at each time step to keep them suitably spaced.

Six point Gaussian quadrature with cubic spline interpolation

for the known functions and linear interpolation for the

unknown functions are used to evaluate the integrals

between adjacent nodes. Numerical tests showed that a dis-

cretization with 120 nodes on the contour of the bubble gives

sufficient resolution.

During the evolution of the bubble, the contact line coin-

cides with the edge of the orifice if the angle of the bubble

surface (computed as explained above) to the base of the

tube is larger than the contact angle of the liquid; i.e.,

when� i � n< cos h. The contact line drifts away from the

orifice when this condition ceases to be satisfied. The radius

of the contact line, rc(t)> 1, is then an additional unknown

which is determined by imposing the additional condition

� i � n¼ cos h at the node of the bubble surface located at

the base of the tube (x¼ 0 and r¼ rc). This condition is simi-

lar to that used in Ref. 23 when the advancing and receding

contact angles are equal to each other, and it is also similar

to the first method described in Ref. 24. It is imposed by

extrapolation from the nodes of the bubble surface near the

contact line; see Refs. 8 and 14 for details. The value h¼ 45�

has been used for the contact angle in the computations dis-

cussed below. Numerical computations with other values of

h show that the effects of the contact angle and the drift of

the contact line on the final volume of the bubbles are small

insofar as h is smaller than about 90�.
If the no-slip condition is strictly imposed at the base of

the tube, then the pressure and viscous stresses in the liquid

around the moving contact line come out inversely propor-

tional to the distance to this line, leading to an infinite force

which would prevent any motion of the contact line.25,26

Therefore, a certain slip is necessary in a macroscopic

description of a flow with a moving contact line in order to

limit the divergence of the stresses. Our numerical method, as

any other method, introduces slip in a region around the con-

tact line with an effective (numerical) slip length of the order

of the distance between adjacent nodes, and our solution is

not grid-independent in this region. Grid-independence can

be achieved in principle by introducing a explicit (physical)

slip boundary condition (for example, the Navier slip condi-

tion vr¼ ‘s@vr/@x at x¼ 0 and r> rc, where vr is the radial

component of the velocity and ‘s is a slip length) and using a

node spacing small compared to ‘s. However, this latter con-

dition is difficult to fulfill in a macroscopic computation,

because microscopic models suggest that the slip length

should scale with the intermolecular distance.23,26 Fortu-

nately, many results in the literature (e.g., Moriarty and

Schwartz27), and our numerical tests for the problem at hand,

show that there is no discernible difference between a solu-

tion obtained with numerical slip and one obtained with a

physical slip condition but a node spacing large compared to

the slip length ‘s. This result is in line with the weak, logarith-

mic dependence of the force on the slip length to be expected

for stresses that vary inversely with (r� rc) for r � rcð Þ � ‘s.

It allows computing reasonable solutions of our problem

without having to resort to the extremely fine grids that would

be needed to resolve the microscopic slip length.

The computation stops when the radius of the neck that

develops during the evolution of the bubble becomes smaller

than a certain cutoff value which is of the order of the local

spacing of the material nodes. This cutoff was set to 0.05,

though numerical tests show that the results are not very sen-

sitive to this value. Upon reaching the cutoff, the time to

detachment is computed by linearly extrapolating the radius

of the neck to zero (see Ref. 32 and Sec. IV A below). The

volume of gas above the neck, augmented by the small vol-

ume injected between the end of the computation and the ex-

trapolated detachment time, is assigned to the detaching

bubble, and the rest of the volume is assigned to the new

bubble that grows at the base of the tube. The surface is

smoothed and reconnected using the cubic splines that are

used for interpolation in the rest of the computation.

The numerical results discussed below were obtaining

allowing two or three cycles of bubble growth and detach-

ment before storing any data, in order to minimize the effect

of the initial state of the liquid (v¼ 0).

IV. RESULTS AND DISCUSSION

A. Cylindrical tubes (a 5 0)

1. Order of magnitude estimates

In this section, we revert partially to dimensional varia-

bles, which are denoted by asterisks. Thus, V�f will denote

the volume of a bubble at the instant of detachment while

Vf ¼ V�f =a3 is its dimensionless counterpart. For reference,

consider first the much-studied case of an infinite reservoir

(R!1), in which two extreme regimes of simple bubbling

have been identified; see Refs. 4 and 15. The first of these is

a quasi-hydrostatic regime realized for small flow rates,

when the forces on the surface of the attached bubble due to

the motion of the liquid are small compared to the hydro-

static pressure and surface tension forces. In this regime, the

balance of the buoyancy force pushing the bubble upward

and the restraining surface tension force that acts across the

contact line reads qgV�f � ra when the radius of the contact

line is of the order of a. This balance gives Vf� 1/B. The sec-

ond regime is a dynamic, high flow rate regime in which the

restraining effect of the surface tension is negligible and the

relevant balance of forces on the bubble is qgV�f � s�V�2=3
f ,

where s� � lv�=V
�1=3
f with v� � Q=V

�2=3
f is the order of the

flow-induced pressure and viscous stresses. This balance

gives Vf� (Ca/B)3/4. The transition between the two regimes

occurs for Ca¼O(1/B1/3). If B� 1, then the attached
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bubble is nearly spherical in the first regime and in the range

of capillary numbers 1=B1=3 � Ca� 1=B in the second

regime.

The wall of the tube begins to affect these results when

R is not large compared to V
1=3
f , and the effect becomes dom-

inant when R� V
1=3
f . In the quasi-hydrostatic regime, this

condition amounts to B1=3R� 1 and leads to a spherical cap

advancing through the tube. The velocity induced in the liq-

uid above the cap by the injection of gas is v*� Q/R*2, and

the flow-induced pressure and viscous stresses on the cap are

s*� lv*/R*. These stresses become of the order of the sur-

face tension stress when the capillary number based on the

radius of the tube, CaR¼Ca/R2, becomes of O(1), which

marks the end of the quasi-hydrostatic regime. Since the

Bond number based on the radius of the tube, BR¼BR2, is

small in the regimes described in this paragraph, the buoy-

ancy force has no important effect on the flow around the

cap and these regimes are of limited interest for bubble gener-

ation. The limiting problem coincides with the problem of a

gas slug moving slowly through a liquid-filled horizontal tube,

in which the advancing cap leaves behind a liquid film whose

thickness is small compared to the radius of the tube when

CaR � 1 (Refs. 28–30) and tends to a limiting value of the

order of the radius of the tube when CaR increases.29–31

In the high-flow-rate regime, the condition R� V
1=3
f

leads to a columnar bubble with a radius of the order of the

radius of the tube and a height at detachment Lf � R. In

these conditions, Vf�R2Lf and the estimates for an infinite

reservoir need modification. The estimate of the flow-

induced stresses on the cap is still valid, and the relevant bal-

ance of forces on a columnar bubble is qgR�2L�f � s�R�2,

which gives Lf/R�Ca/(BR4), or Vf�Ca/(BR). If B1/3R is not

small, then the effect of the finite radius of the tube comes

into play already in the high-flow-rate regime when Ca
becomes of order BR4, and the cap of the bubble can be

nearly spherical if BR4 � Ca� R2.

2. Numerical results

Some numerical computations have been carried out to

study the growth and detachment of a bubble in a cylindrical

tube and to validate the estimations above. Figure 2 shows a

bubble which is about to detach from the base of the tube for

B¼ 0.2, Ca¼ 10, and the three values R¼ 5, 4, and 3.5 of

the dimensionless radius of the tube. Figure 3 shows the val-

ues at detachment of the bubble volume Vf and aspect ratio C
(defined as the ratio of Lf to the maximum diameter of the

bubble) as functions of R. The finite radius of the reservoir

affects only the high-flow-rate regime for the values of B and

R used here. The decrease of C with increasing R in Fig. 3(b)

is in qualitative agreement with the estimate Lf/R�Ca/(BR4)

for columnar bubbles. The decrease of Vf in Fig. 3(a) also

agrees with the previous estimates, according to which the ra-

tio of the volume of a columnar bubble to the volume of a

bubble detaching in an infinite reservoir is of order (Ca/B)1/4/R
for Ca/B large compared to R4.

Figure 4 shows Vf as a function of Ca for B¼ 0.2 and

three values of R. The nearly linear increase of Vf agrees

with the estimate Vf�Ca/(BR). Notice, for comparison, that

Vf� (Ca/B)3/4 for a bubble in an infinite reservoir. The nu-

merical computations also show (results not displayed) that

the center of mass of a columnar attached bubble rises line-

arly with time during the growth of the bubble, and that the

velocity of the center of mass is nearly constant, except in

the early stages of the process, when the bubble is still small

compared to the radius of the tube.

Additional computations with B¼ 0.1, R¼ 2.5, and

small values of Ca show a thin liquid film between the bub-

ble and the wall, whose thickness decreases with Ca. This is

in line with the results of Bretherton,28 though here

BR¼BR2¼ 0.625 is not small enough for the effect of the

buoyancy to be negligible. The computations could not be

extended to values of CaR¼Ca/R2 smaller than about 0.03,

at which the liquid film seems to develop a corrugation, due

to lack of resolution when the film becomes very thin. Series

of computations in which Ca is increased keeping B¼ 0.2

and R¼ 5, or in which R is decreased keeping B¼ 0.2 and

Ca¼ 10, show that the thickness of the liquid film scaled

with R tends to a constant value of about 0.3 when CaR

increases. This value is not far from the limiting value of

FIG. 2. Meridional section of a bubble which is about to detach from the

base of a cylindrical tube for B¼ 0.2, Ca¼ 10, and R¼ 5 (a), 4 (b), and 3.5

(c).

FIG. 3. (a) Volume Vf and (b) aspect ratio C, defined in the text, of a bubble

at detachment from the base of a cylindrical tube as functions of R for

B¼ 0.2 and Ca¼ 10.
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about 0.36 found by Taylor31 (see also Martinez and Udell30)

for a gas slug moving through a horizontal tube.

A neck forms during the evolution of the bubble and

snaps at detachment. In the cases that have been computed,

the final steps of this pinchoff process are not much affected

by the finite radius of the tube and seem to follow the non-

universal, quadratic breakup dynamics investigated by

Surio et al.,32 as in computations carried out elsewhere for

an infinite reservoir.14 The volume of the detached bubble is

computed as described in Sec. III.

B. Conical tubes

Figure 5 shows the shape of a bubble which is about to

detach from the base of a conical tube for B¼ 0.2, Ca¼ 50,

R¼ 1.2, and various values of the semi-angle of the cone,

and Fig. 6 shows the volume Vf and the aspect ratio C of the

detaching bubble as functions of a for R¼ 1.2 and different

couples of values of B and Ca. As can be seen, the volume of

the bubble always increases when the angle of the cone

decreases, the effect being more pronounced for small values

of the Bond number, for which the bubble is larger and,

therefore, more easily affected by the wall of the tube.

Figure 6(a) displays an important result of this work,

namely that, at low Bond numbers and high capillary num-

bers, the volume of the bubbles can be easily controlled

through the angle of the cone without having to change the

flow rate. This is a desirable possibility in some applications.

These numerical results can be rationalized by means of

a straightforward extension of the estimations of Sec. IV A 1

for the high-flow-rate regime in cylindrical tubes. Figure 5

shows that the bubbles in conical tubes are columnar for

moderately small values of a, with a cap that increases line-

arly with its height above the base of the tube. (See also Fig.

6(b); the bubble is slender for a smaller than about 30�.)
Using the notation of Sec. IV A 1 and assuming that

aL�f � R�, so that the characteristic size of the cap ðaL�f Þ is

large compared to the radius of the base of the tube, the char-

acteristic velocity of the liquid around the cap is

v� � Q=ðaL�f Þ
2
, the characteristic viscous and pressure

stresses on the cap are s� � lv�=ðaL�FÞ, and the balance of

buoyancy and flow-induced forces on the bubble becomes

qgðaL�f Þ
2L�f � s� ðaL�f Þ

2
, whence Lf� (Ca/B)1/4/a3/4 and

Vf� (Ca/B)3/4/a1/4 in dimensionless variables. This estimate

coincides with the estimate for the high-flow-rate regime in

an infinite reservoir15 when a¼O(1), and shows that the vol-

ume of the bubble increases when a decreases. The condition

aL�f � R� used above amounts to Ca=B� R4=a. The esti-

mate for a cylindrical tube should be used when

Ca=B� R4=a. Finally, surface tension stresses on the cap of

the bubble become important when r=ðaL�f Þ � s�, which

determines a lower bound capillary number, Ca¼O(a/B),

below which the estimate is not valid.

V. EXPERIMENTS

A series of experiments have been carried out to study

the growth and detachment of bubbles in very viscous liquids.
FIG. 5. Meridional section of a bubble which is about to detach from the

base of a conical tube for B¼ 0.2, Ca¼ 50, R¼ 1.2, and various values of a.

FIG. 6. (a) Volume Vf scaled with Ca3/4 and (b) aspect ratio C of a bubble

at detachment from the base of a conical tube as functions of a for R¼ 1.2

and (B, Ca)¼ (0.2, 10) (solid), (2, 10) (dashed), (2, 20) (dotted), and (0.15,

50) [chain, in (a only)]. Symbols show the values of Vf/Ca3/4 and C meas-

ured experimentally for B¼ 0.0176 (D) and B¼ 0.15 (h), with Ca¼ 50.78,

R¼ 1.2 and different values of a.

FIG. 4. Volume of a bubble at detachment from the base of a cylindrical

tube as a function of Ca for B¼ 0.2 and R¼ 4 (dotted), 5 (solid), and 6

(dashed).
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Glycerine and silicone oil have been used in different experi-

ments. The properties of glycerine at 25� are: density

q¼ 1260 kg/m3, viscosity l¼ 7.9	 10� 1 N s/m2, and sur-

face tension r¼ 6.3	 10� 2 N/m. The properties of the sili-

cone oil at the same temperature are: density q¼ 971 kg/m3,

viscosity l¼ 9.71	 10� 1 N s/m2, and surface tension

r¼ 2.12	 10� 2 N/m. In each experiment, a large open con-

tainer with a horizontal bottom where a circular orifice of ra-

dius a¼ 0.3 mm has been drilled was filled with the chosen

liquid to a height of 100 mm. A glass tube of inner radius

R*¼ 3.2 mm was set vertically and concentrically with the

orifice to form a cylindrical tube. Conical tubes of various

angles were formed by carefully inserting cones made of ace-

tate sheet concentrically with the orifice.

Air was pumped through a capillary tube 40 cm long

and 0.6 mm of inner diameter which ends at the orifice in the

bottom of the container. We found in a previous work7 that a

length of 40 cm suffices to make the pressure drop in the air

line large compared to the pressure variations in the bubble

during the growth process and, therefore, ensure a constant

flow rate in our experiments, which is one of the premises of

the numerical work. To check that the flow rate is constant,

the evolution of the attached bubble was video recorded; the

contour of the bubble was extracted from the video images

using a standard algorithm33 implemented in a home made

code; and the volume of the bubble, V(t) and the height of its

center of mass, xCM(t) were computed assuming that the bub-

ble is axisymmetric. Some sample plots of V as a function of

time for a bubble growing in glycerine within conical tubes

of various angles are shown in Fig. 7. The approximately lin-

ear variation of V with time shows that the flow rate is nearly

constant and independent of the angle of the cone. The value

of the flow rate determined by fitting a straight line to the ex-

perimental data of Fig. 7 is Q¼ 364.5 mm3/s. The same pro-

cedure was used to measure the flow rate of air injected into

silicone oil and in cylindrical tubes. The flow rate was found

to be nearly constant in all the cases.

Figure 8 shows the shapes of bubbles in glycerine which

are about to detach from the injection orifice in conical tubes

of various angles. Here, a¼ 90� corresponds to a bubble

detaching in an infinite reservoir, and the shape of the bub-

bles begin to differ significantly from this case when a
becomes smaller than about 30�. Coalescence between previ-

ously detached bubbles can be seen in some of the images.

The presence of the conical wall increases the drag of the

ascending bubbles, decreasing their velocity and apparently

promoting coalescence. We plan to analyze this important

aspect of the generation of bubbles in a future work. The gas

flow rate in this sequence of experiments is that measured

from Fig. 7. Values of the dimensionless parameters are

B¼ 0.0176, Ca¼ 50.78, and R¼ 1.2.

The final volume Vf and aspect ratio C of the bubbles in

Fig. 8 and others were extracted from the images and

included in Fig. 6 (triangles and squares), where they are

compared to numerical results obtained for similar values of

the dimensionless parameters. The comparison is reasonably

good, though the experimental values of C increase with

decreasing a somewhat faster than the numerical values, and

become larger than them for small values of a. We think that

the difference is due to the vertical momentum injected with

the gas, which was not taken into account in the numerical

computations.

FIG. 7. Volume of a bubble attached to the base of a conical tube filled with

glycerine as a function of time during the growth of the bubble for

B¼ 0.0176, R¼ 1.2, and different values of the semi-angle of the cone.

a¼ 10� (h), 20� (	 ), 25� (~), 30� (n), and 90� (D).

FIG. 8. Images of a bubble which is about to detach from the base of a coni-

cal tube for B¼ 0.0176, Ca¼ 50.78, R¼ 1.2, and various values of the semi-

angle of the cone.

FIG. 9. Four equispaced images span-

ning the period of growth of a bubble

attached to the base of a conical tube for

B¼ 0.04, Ca¼ 70.23, R¼ 1.2, and

a¼ 15�. The period of bubbling is 1 s.
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Figure 9 shows four equispaced images of a bubble

growing in silicone oil within a conical tube of semi-angle

a¼ 15�. The flow rate is Q¼ 138 mm3/s, leading to

B¼ 0.04, Ca¼ 70.23, and R¼ 1.2. The period of bubbling is

1 s. The evolution of the center of mass of the bubble is

shown in Fig. 10 and compared to numerical results. The

nearly linear increase of xCM with time is to be compared to

the xCM / t1=3 evolution expected for a round bubble grow-

ing in an infinite reservoir.15 The difference clearly shows

the effect of the conical wall.

Only silicone oil was used in experiments with cylindri-

cal tubes because glycerine tends to produce small bubbles

that linger in the tube for a long time and interfere with the

observation of the bubble attached to the orifice. Figure 11

shows five images equispaced in time that span the cycle of

growth and detachment of a bubble. The flow rate of gas

measured from the video record is Q¼ 419.59 mm3/s in this

experiment, and the period of bubbling is 1.33 s. Values of

the dimensionless parameters are B¼ 0.04, Ca¼ 209.94, and

R¼ 10.66. Figure 12 shows the position of the center of

mass of the bubble as a function of time. As was to be

expected from the columnar character of the bubble, xCM

increases linearly with time during most of the evolution,

with the exception of two short intervals at the beginning

and the end of the process.

VI. CONCLUSIONS

The growth of a bubble due to the injection of a constant

flow rate of a gas through an orifice in the horizontal base of

a tube filled with a very viscous liquid has been investigated

numerically and experimentally in conditions when nearby

solid walls partially confine the space where the bubble is

allowed to grow. Conical and cylindrical walls coaxial with

the injection orifice have been used to allow easy control of

the extent of the confinement by simply changing the angle

of the cone or the radius of the cylinder.

Numerical solutions of the Stokes equations for the liq-

uid and the evolution equation for the free surface of the

bubble show that the wall near the injection orifice may have

an important effect on the shape of the bubble and its volume

at detachment. Computations for small Bond numbers

(B¼ 0.2) and moderately large capillary numbers (of the

order of 10) show that vertically elongated bubbles with vol-

umes significantly larger than those of the round bubbles

generated in the absence of walls are obtained when the ra-

dius of the cylindrical wall is smaller than about six times

the radius of the orifice, or when the semi-angle of the cone

is smaller than about 30�. The computed distributions of

forces on the surface of the bubble and the wall suggest that

buoyancy, viscous drag, and viscous friction with the wall

all play a role in the dynamics of the bubbles. Experiments

have been carried out with two different viscous liquids that

have allowed to explore wide ranges of the Bond and capil-

lary numbers keeping the effect of the inertia of the liquid

small. Good qualitative agreement has been found between

numerical and experimental results. The known scaling law

for the volume of a bubble at detachment from the bottom of

an unconfined liquid has been extended to take into account

the presence of conical or cylindrical walls. For a conical

tube, the semi-angle of the cone appears as an extra factor

a� 1/4 multiplying the standard (Ca/B)3/4 scaling. For a

FIG. 10. Height of the center of mass of a bubble attached to the base of a

conical tube as a function of time during the growth of the bubble for

B¼ 0.04, Ca¼ 70.23, R¼ 1.2, and a¼ 15�. Symbols are experimental

results and the solid curve shows the results of the numerical computation.

FIG. 11. Five equispaced images

spanning the period of growth of a bub-

ble attached to the base of a cylindrical

tube for B¼ 0.04, Ca¼ 209.94, and

R¼ 10.66. The period of bubbling is

1.33 s.

FIG. 12. Height of the center of mass of a bubble attached to the base of a

cylindrical tube as a function of time during the growth of the bubble for

B¼ 0.04, Ca¼ 209.94, and R¼ 10.66.
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cylindrical tube, the exponent may change from 3/4 to 1

when the radius of the cylinder decreases.

The results of the work may have a bearing on the gas

lift method of enhanced oil recovery, where properly shape

injection nozzles may allow optimizing the volume of the

bubbles generated in oil production pipes without having to

change the flow rate of gas.
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