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Markovian motion of beads in the Galton-Board
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The Galton’s board is a periodic lattice made with fixed nails at its nodes, spherical grains travel through them due to gravity. We show the
convenience of this system to present the main concepts of Markovian-stochastic trajectories during the motion of only one particle. In a
special case, the Galton board was modified, a set of nails (20%) were removed randomly. Under such a change the main characteristics of
the random motion are mantained.

Keywords: Stochastic processes; Galton board; Langevin equation.

La tabla de Galton es una red periódica hecha con clavos fijos en sus nodos, partı́culas esf́ericas viajan a trav́es de ellos debido a la gravedad.
Se muestra la utilidad de este sistema para presentar los principales conceptos de trayectorias estocásticas de Markov durante el movimiento
de una sola partı́cula. En un caso especial, la tabla de Galton fue modificada, un conjunto de clavos (20%) se eliminaron al azar. Bajo este
cambio las caracterı́sticas principales del movimiento al azar prácticamente no se modifican.

Descriptores: Procesos estocásticos; tabla de Galton; ecuación de Langevin.
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1. Introduction

In simple physical systems we can measure macroscopic
quantities such as density and energy, this allows for well-
defined values. Actually, this is only an approximation be-
cause matter is not really continuous, since it consists of dis-
crete particles. When we look particles and their interactions
we need to take into account the existence of fluctuations
(also called noise). A special type of noise is the so called
Brownian motion. This type of motion generates random or
stochastic trajectories of a small particle immersed in a liq-
uid. It is well known that each molecule of the liquid shocks
against this small particle giving a motion where the time-
averaged position of the particle is zero,〈r(t)〉 = 0, (〈•〉
denotes the average over along time andr(t) is the instan-
taneous position of the particle) and the second moment is
〈r(t)r(τ)〉 = Aδ(t− τ)), it means that motion is Markovian,
i.e., a memoryless motion.

A very similar motion, but in a mechanical system oc-
curs when a bead falls down in the so called Galton´s board.
In fact, in 1889 Francis Galton [1–3], used this system as a
mechanical device to show both the law of error and the nor-
mal distribution. This device consists of a vertical board with
interleaved rows of nails, beads are dropped from the top,
bouncing left and right as they hit the nails. Below, beads are
collected in bins where the height of bead columns approxi-
mates a bell curve.

Motivated by such a device, here we are interested in de-
scribing, in a detailed manner, the irregular trajectory or the
trace of the bead crossing this board. When a particle travels
the board, it has a probability of motion in a certain direc-

tion at certain speed. This latter gives a random motion or
noise movement to the particle’s path that can be viewed as
an example of stochastic motion.

Diffusion problems can be approached and modeled in
essentially two ways: a macroscopic description which is
only concerned with mass conservation and phenomeno-
logical constitutive equations; and a microscopic descrip-
tion, which models this phenomena taking into account the
stochastic nature of the interaction among diffusing parti-
cles,i.e. it models the behavior of individual solute particles
bouncing around with the solution molecules and possibly in-
teracting with the substrate. The elementary particles under
the effect of different force fields of different nature perform
complex motion, the trajectories of these particles reproduce
the geometrical complex structure, ejemplo de este tipo de
sistema is the naturally and artificially fractured reservoirs.

In this paper we are interested in emphasizing the role of
describing the random or stochastic motion of a falling grain,
due the gravity in a lattice of nails, in terms of stochastic dif-
ferential equations, like the Langevin equation [4]. Here the
dynamics of a particle is affected by an effective frictional
force,Ff = −λV , directed against the trajectory of the par-
ticle. Through this model, we should make plausible some
of the main hypothesis of this type of description and we can
study the time-dependent fluctuations, that is, how the devia-
tions at different times are correlated with each other.

This paper is organized as follows. In Sec. 2, we present
the experimental setup known as the Galton´s board, together
with the measuring techniques. The bases of the theoretical
treatment are presented in Sec. 3; after in Sec. 4 we applied
this technique to understand the stochastic motion of beads
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FIGURE 1. Galton´s board showing the track of a steel-bead.

FIGURE 2. Modified Galton’s board where has been removed a
20% of the nails.

FIGURE 3. Typical actual trajectory motion of steel-bead on the
Galton´s board.

in the experiments. Finally, a brief summary as some possible
extensions of this work are given in Sec. 5.

2. Experimental Setup

2.1. The apparatus

In this section we describe the experimental set-up. The ex-
periment was built as a board of nails, see Fig. 1, where also
is shown the trajectory of steel bead. Here steel-nails were
fixed to a wood-board on regular form, resulting into a trian-
gular lattice, like Lorentz lattice of fixed scatterers [5]. The
horizontal distance between nails isD = 10.0 ± 0.05 mm
and the oblique distance isD́ = 11.5 ± 0.05 mm. The nails
have a diameter mean size ofδ = 1.96± 0.05 mm. The size
of the board was58.0 cm length by45.0 cm height.

Motions of two types of grains, spherical steel-bead and
gel-beads of mean sized = 4 mm, falling down due to grav-
ity, from rest were video recording with a camera at 30 frames
per second. Each frame has a resolution of480×640 pixels.
In our experiment we have that1 pixel = 1 mm. The average
number of pixels that the bead travels between frame is ap-
proximately 4 along thex−axis and 6 along they−axis. In
order to avoid grains leaving the board, we have inclined it to
an angleθ < 90◦, respect to the horizontal.
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FIGURE 4. Typical behavior ofx-component for steel-bead, (a)
trajectory, (b) velocity and (c) acceleration.

As a special case of the Galton board, it was modified
as follows: randomly and uniformly (on rows) nails were re-
moved by a 20%. To do it was used a random number gen-
erator [6]. As a result of it, was obtained a no homogeneus
board (with uniform distribution of “holes”). In Fig. 2 we
show a typical Galton board with 20% of nails removed.

2.2. Measurements

We mainly report experiments made with an angleθ = 74◦,
in order to limit the friction force between the wood-board
and beads on the particle motion. As aforementioned at time
t = 0, one grain was falling down from the top, and its
noisy path was recorded and analyzed frame by frame on a
computer monitor. A set of twenty experiments, for each
grain, was recorded in this study. The position versus time
needed to determine the speeds and accelerations used to cal-
culate the instantaneous velocities and accelerations along
the transversal direction are respectively

vxi =
xi − xi−1

ti − ti−1
, axi =

vxi − vxi−1

ti − ti−1
(1)

wherexi indicatethe transversal component at timeti, the
same is valid for the downward longitudinal component,yi.

FIGURE 5. Typical behavior ofy-component for steel-bead, a) tra-
jectory, b) velocity and (c) acceleration.

A typical trajectory of the steel-bead in the board is given
in the Fig. 3. The gravity has a component in they direc-
tion. Plots for thex component of the trajectory and their
speed and acceleration are shown in the Fig. 4, and the same
is shown for they component (see Fig. 5). Notice that the
behavior of each component is both quantitatively and quali-
tatively different from each other.

In all measurements, despite the abrupt behavior of the
x component, the time-averaged position,〈x〉, turns into a
zero mean value,i.e., 〈r(t)〉 = 0. The same is maintained
for 〈vx〉 and〈ax〉. On the other hand, the mean value of the
y component can always be approximated by straight lines,
i.e., 〈y〉 = ct (see the Fig. 4(a)). These facts will be used in
the next section in order to model the fluctuating motion.

For the gel case, the experiments were performed with a
gel-bead of mean sized = 4 mm. Plot of the trajectory of the
gel-bead as a time function is given in Fig. 6. Their speed and
acceleration as a function of time, along with the transverse
x-component, are shown in the Fig. 7. Similar plots, but for
the longitudinal component,y, are given in Fig. 8.

In the case where the nails were removed, the dynamics
is very similar for both cases, steel-bead and gel bead case.
This is shown through the trajectories in Fig. 9.
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FIGURE 6. Typical actual trajectory motion of the gel-bead on the
Galton´s board.

The steel-bead an gel-bead have a restitution coefficient
e = 0.72 ande = 0.77 respectively, this was found experi-
mentally over a steel plate7.32 mm, using the equation

e =
vR

vi
=

hR

hi
, (2)

wherehR is the rebound height andhi is the initial height [7],
as it can see, the restitution coefficients are near the same,
but the experiment in the Galton’s board it can see that those
coefficients change. In this equation it can see the cause of
change:

e =
√

Wkin.R

Wkin
=

√
1− Wabs

Wkin
=
| vR |

v
. (3)

In the previous equation restitution coefficient is the
square root of the ratio of elastic energyWkin.R, released dur-
ing the impact,i.e, the kinetic energy of the initial impact mi-
nus the absorbed energy,Wkin −Wabs. This later expression

FIGURE 7. Typical behavior ofx-component for gel-bead, (a) tra-
jectory, (b) velocity and (c) acceleration.

also can be written in terms of the impact and rebound veloc-
ities,v andvR, respectively [8].

Trajectories in the steel-bead and gel-bead are different
among them, essentially because in the case of gel-beads re-
bounds and oblique shocks are much more frequent and loss
a small quantity of kinetic energy, the distances attained in
this case are larger in both components.

3. Theoretical Approach

3.1. The Langevin´s Treatment

It is convenient to remember some important facts of the
Brownian motion. One of the first phenomenological de-
scriptions of Brownian motion was made in 1908 by French
physicist Paul Langevin. He established the following argu-
ments: if a large particle (compared with atomic dimensions)
is introduced into a fluid, then, according to hydrodynamics,
it experience an opposite force that depends on speed. This
opposing force is due to the viscosity of the fluid. The greater
the speed with which the body moves inside the fluid, the
greater the opposing force or viscous friction that is created.

Moreover, as described above it is known that introducing
a small particle in a fluid, it experiences forces due to colli-
sions suffering with fluid molecules. Given the large number
of collisions occurring at every moment, this second force
varies in a very random and violent manner. This means that
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FIGURE 8. Typical behavior ofx-component for gel-bead, (a) tra-
jectory, (b) velocity and (c) acceleration.

FIGURE 9. Typical actual trajectory motion of the steel bead a) and
gel-bead b) on the Galton´s board with a 20% of the nails removed.

if, for example, make observations of the Brownian particle
with a time scale of the order of seconds, the force due to
collisions will change greatly, as have occurred in a second

lot of collisions. On the other hand, in this same time scale,
the first force of which we have spoken, the friction changes
very little.

Below we report the analysis for the motion beads, for the
steel-bead we can apply the theoretical treatment builded by
Langevin and for gel-bead, we only identify the differences
with the steel bead. For the Galton’s board modified here are
no major changes respect to results in the normal Galton’s
board.

3.1.1. Motion of steel-bead

An adequate approach to study the fluctuating motion of
the particles and interactions having similar behavior is the
Langevin´s treatment [5]. This inspired guess is able to short
cut the general theory of fluctuating processes, turning out to
be the only possibility for systems with a linear response. In
this sense letQ be physical quantity obeying a linear phe-
nomenological law

dQ

dt
= −γQ, (4)

whereγ is a constant andQ, for example, can be a compo-
nent of the velocity of a heavy particle suspended in a gas or
a liquid. In order to describe also the fluctuations, one writes
for the instantaneous, detailed valueq of the same physical
quantity, the Langevin equation

dq

dt
= −γq + f(t). (5)

This equation is only meaningful if some information re-
garding the random forcef(t) is added. In general, when
working with stochastic quantities, their description is in
terms of their distribution. Two features that have the above
distribution are: its mean and standard deviation. Sincef(t)
is pictured as a very rapid and irregularly varying function
of time, it can be only described by its stochastic properties.
Specifically one assumes

〈f(t)〉 = 0, (6)

here〈f〉 denotes the average over a long time interval com-
pared to the rapid variations inf(t), but short compared to
the phenomenological damping time1/γ. In these fluctuat-
ing forces, it would be reasonable to think that if we take an
interval of, for example, a second, the force is exerted in one
direction and in the opposite direction so that, on average,
the force vanishes. Then at each instant the average stochas-
tic force is zero.

Furthermore, we must keep in mind that this stochastic
force changes with time, which means that not only must
say something about their distribution at a given time, but
also something about how to relate the values of the forces
stochastic at various times. In addition one assumes

〈f(t)f(τ)〉 = Γδ(t− τ), (7)
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hereΓ is a constant independent oft (t > τ ) and q. The
delta-function is actually a sharply peaked but finite func-
tion, whose width is the autocorrelation time off(t). If we
make observations on scales of the order of seconds, then the
stochastic force value at a given time has nothing to do with
the value it acquires in another moment that is separated by
seconds. This is because in a second, the force varied greatly,
so that the end of the interval, the force does not have a close
relationship with the value it had at the beginning of the in-
terval. It is possible say that stochastic or fluctuating forces
are not correlated at various times. This assumption about
f(t) constitute the short cut replacing the general theory of
fluctuating processes.

From Eqs. (6) and (7) it immediately follows that〈q〉
satisfy the phenomenological law (4) and it may therefore
be identified with the macroscopic quantityQ. In summary,
using these arguments we conclude that the total force expe-
rienced by the Brownian particle is the sum of two forces:
the systematic and stochastic. The stochastic force varies
widely within the time scale that it changes the systematic
force. However, if you add two quantities, one known, but
the other stochastic nature, the sum will also be stochastic.
Consequently, the total force experienced by the particle is
random.

Once this identification is made, it may concluded that (5)
describes correctly the phenomenology of the system.

The spectral density of a signal is a mathematical func-
tion that tells us how it is distributed the power or energy
(as appropriate) of that signal on different frequencies that it
is formed. It is often called simply the spectrum of the sig-
nal. Intuitively, the spectral density captures the frequency
content of a stochastic process and helps identify periodic-
ity. There exists a Fourier relationship between a time func-
tion and its spectrum, there also exists a Fourier relationship
between the autocorrelation function and the power spectral
density of a stochastic process. This important result in sig-
nal processing and communication theory is known as the
Weiner-Khintchine theorem

S(ω) =

∞∫

−∞
〈q(t)q(t + s)〉 exp[−iωs]ds = Γ, (8)

where ω = (2π/t) is the angular frequency given by
Ramirez [9]. A random process with a spectrum of the corre-
lation function which is flat and independent of the frequency
ω is usually called awhite noise. All frequencies are equally
represented in such a process.

Of course, the white noise never can be performed in
nature because a real random process has always a non-
vanishing characteristic correlation time (memory)τ. How-
ever, the correlation (7) serves as a very convenient mathe-
matical idealization of a process, whose memory is short (as
compared to all other characteristic times). More exactly, this
is the limit of a short-correlated process forτ → 0.

The first moment〈f(t)〉 in general is related to the av-
erage acceleration〈dvi/dt〉 (i = x, y). As can be seen

in Figs. 4(c) and 5(c), was found that when removing nails
evenly, up to 20%, changes in the plots of are smaller, also
for the case of the gelatin-bead, this moment is zero because
the mean value of the time series is exactly zero.

3.1.2. Motion of gelatin-bead

We again apply the Langevin approach for the motion of the
gel-bead. As in the previous section the experimental results
given in Figs. 7(c) and 8(c) lead to conclude that the first mo-
ment also obeys the Eq. (6). The mean of the stochastic force
is null, due the fact that thex-component of the trajectory is
maintained aroundx = 0 and the mean velocity alongy is
no accelerated. However the second moment is not constant,
hence we have

〈f(t)f(τ)〉 = g(t). (9)

According to the experimental data, we note that the
spectral density increases as a function of power, hence the
autocorrelation function has a non constan Fourier spectrum

S(ω) = ωα, (10)

whereα ∈ R. In the classification by spectral density is given
color terminology, with different named types. In the next
section we assigned theα value for the motion of the bead.

All the above analysis of the Langevin approach for the
motion of both types of grains, applies to thex andy trajecto-
ries of each case. Langevin description will be useful in the
problem to contextualize the experimental results of the dy-
namics of the particle in the lattice. We should note that the
program to construct the equation of motion and the stochas-
tic properties of force have not been used experimentally for
the case of a single particle in a dense medium. In this paper
does not intend to replace the medium by a discrete lattice,
but rather to characterize the lattice effect on the trajectory of
the bead.

4. The Langevin Approach to the Galton
board

As we have found in Sec. 2, all grain paths have noise behav-
ior, which will be modeled in this section. These are given
to us for both the transversal and longitudinal components
respectively,

X(t) = 〈x(t)〉 = 0, (11)

Y (t) = 〈y(t)〉 = V0t. (12)

Physically, the Eq. (11) gives the important result that,
on average, the beads remain mainly at the center, therefore
there is non a preferred direction of propagation. On the other
hand, Eq. (12) indicates that the beads propagate towards the
bottom of the board with a constant velocityV0, although
that gravity and continuous collisions with the nails, act on
the bead and the apparent motion is very fluctuating .

We now analyze the particle dynamics; then we have two
options for the analysis:
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30 M. NÚÑEZ-LÓPEZ, A. LÓPEZ-VILLA, C. A. VARGAS, AND A. MEDINA

• to build the motion equation in terms of the Newton
second law [10], or

• to build a less detailed motion equation containing
gross effects on the bead.

In this work we chose this last option, because from
a simple model we obtain a good description for the mo-
tion. The average motion can be understood if we sup-
pose that the medium response on the grain´s path is lin-
ear. The linear response theory will let us to use the fact that
d〈ω〉/dt = 〈dω/dt〉 to any quantityω. Specifically, the aver-
age velocity is thend〈x〉/dt = 〈dx/dt〉. This leads to

Vx =
dX

dt
= 0, (13)

Vy =
dY

dt
= V0, (14)

i.e., the average propagation velocity,Vy, is a constant equal
to V0. For the steel-bead, plot 5(b), yieldsV0 = 19.34 cm/s
and for gel-bead, plot 8(b), yieldsV0 = 5.47 cm/s both of
mean sized = 4 mm. Finally, the components of the accel-
eration are

Ax =
dVx

dt
= 0, (15)

Ay =
dVy

dt
= 0. (16)

These two relationships indicate, as we mentioned before,
that the motion is acceleration free.

Equations (15) and (16) apparently are similar expres-
sions, but each one reflects distinct macroscopic and detailed
behavior. We can use the linear Langevin´s approach as the
model for the detailed motion equations see Sec. 3.1. Such
approach assumes that the instantaneous time seriesvx(t)
andvy(t) are due to fluctuating forcesh(t) andf(t), respec-
tively. So, the abrupt behavior of thex component can be
understood by using the Langevin equation

dvx

dt
= h(t), (17)

herethe average ofh(t) is null and it clearly describes the av-
erage null motion along the transversal motion (see Fig. 4(c)).

To study they-component we can assume a force on the
bead, like hard spheres, where the frictional force of the lat-
tice is proportional to the average velocity in they direction,
V0, and other force (opposite to the motion) of stochastic na-
ture,f(t), proportional to the instantaneous velocity. In this
case

dvy

dt
= f(t) + λV0 = −λ(vy − V0), (18)

λ the effective friction coefficient, is a constant independent
of vy andt, for the steel-beadλ = 31.42 s−1 and we have
for gel-beadλ = 40.71 s−1 for particles of mean sized = 4
mm, these values ofλ change for differentd andθ values.
In both cases the change in value of the friction coefficient is
minimal for the cases the modified Galton’s board.

If we take into account equations derived from the exper-
imental data, we can see that the stochastic properties of the
random forces, of the equations (17) and (18) are respectively
of the form

〈h(t)〉 = 0 (19)

〈f(t)〉 = −λV0. (20)

to all grain sizes here treated.
Another way to prove the non accelerated motion, can be

investigated through the mean squared displacement〈y2(t)〉
(see Fig. 10), this quantity give us

〈y2(t)〉 = βnt2, (21)

whereβn are constants depending on grain sizes. Expres-
sions of the form (19) is valid for different diameters of grains
used in our experiments and indicate the behavior of free
particles. Note that when the grain grows his movement is
slower in the the arrangement of nails.

There is the phenomenon of collision between the nails
and beads, this causes that the particles exhibit dominantly
elastic-plastic or plastic behavior during collisions. The ki-
netic energy absorption is the result of plastic deformation,
adhesion and friction between nails and the table.

The restitution coefficient is an important parameter of a
material, is used to describe the energy absorption and damp-
ing force. For an ideal elastic impact, the energy is absorbed
during the impact and recovered on the rebound, so the rel-
ative velocity before impact is equal after impact. For the
complete absorption of kinetic energy the restitution coeffi-
cient is zero. Finally in the case of elastic-plastic impact, the
range of restitution coefficient is in a range from zero to one.

FIGURE 10. Mean square displacement〈y2(t)〉 as a function of
time.
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FIGURE 11. Fourier transform of steel-bead.

For this study, we used gelatin and steel beads, both ma-
terials are not purely elastic neither purely inelastic, that is
why is important to present the restitution coefficients study.
We determined the restitution coefficient [11] as the ratio of
relative rebound velocityVR to that before the impactV ,
the normal and oblique impacts are described by normal and
tangential restitution coefficients

en = |VR,n| /Vn, et = |VR,t| /Vt.

In both cases we determinated the average restitution co-
efficient because we obtain the instantaneous velocity in the
x andy component. For gelatin bead the normal and tangen-
tial restitution coefficient areen = 0.5750 andet = 0.7228,
for steel bead the restitution coefficient areen = 0.6160 and
et = 0.7232.

In this paper we propose two stochastic differential equa-
tions (17) and (18) to describe the random motion; there are
works where their principal aim is a numerical study of a
bidimensional Galton board with determinist equations. Ben-
ito et al., [12] have able to reproduce by means of computa-
tional simulations the geometrical features of a Galton board,
they introduce the effect of bouncing without calculating any
force and simulate disk of equal diameters but different elas-
tic properties. In Ref. 13 present results of simulations of a
model of the Galton board for various degrees of elasticity of
the ball-to-nail collision, the fall of the ball is described with
a set of two ordinary differential equations.

Finally [14] present a numerical simulation of general-
ized Langevin equation with arbitrary correlated noise for
anomalous and ballistic diffusion applications.

FIGURE 12. Fourier transform of gel-bead, (a)x-component , (b)
y-component.

4.1. Power spectra

The noise of the paths can be characterized as mentioned be-
fore, from the power spectra that can be alternatively calcu-
lated by the expression

S(ω) = |f(ω)|2/ω, (22)

f(ω) is the Fourier transform off(t). In Fig. 11 show cal-
culations for all time seriesh(t) andf(t) give us constant
values which confirm the existence of white noise for these
components.

Using the Wiener-Khinchine theorem,i.e., employing the
inverse Fourier transform in (8), we easily obtain that the cor-
relation ofh(t) andf(t) gives delta correlations to each com-
ponent

〈h(t)h(τ)〉 = Γnδ(t− τ), (23)

and

〈f(t)f(τ)〉 − 〈f(t)〉2 = Γ́nδ(t− τ). (24)

Γ andΓ́ are constants.
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4.2. Gel-bead

The noise of the paths can be characterized from the power
spectraS(ω) = |f(ω)|2 /ω, the calculations for noise ofh(t)
andf(t) do not give constant values as occurs in the case
of white noise because there are not a unique characteristic
frequency; instead in the present cases a color noise is raised.
A color noise indicates that the power spectra fit a power law
of the formS ∼ ωα, so we have color of noise, according to
the (10) we need calculateα. In the componentsx andy ad-
just with a logarithm function the adjusted functions are the
power spectra forh(t) andf(t). The correlation in the graph
(Fig. 12) fits to the following power functions.

For the force along thex−axis

S = 0.3272ω1.29, (25)

and for the force along they−axis

S = 0.1599ω1.5. (26)

Perhaps the difference in the value ofα among thex and
y axis is due to bead motion that is forced by gravity mainly
in they direction,i.e. there is a continuos energy addition.

5. Conclusions

The fluctuating motion of the particles (steel and gel beads)
on the Galton´s board has a motion like a particle interacting
with a hard spheres gas where the frictional term is propor-
tional to the velocity. However, unlike this system where the

particle has diffusive motion, in the Galton´s board the par-
ticle will propagate, in average, towards the board´s bottom
like a free particle. Up to what we know, this is one of the
very first time that the random motion of a single particle
can be investigated, and the stochastic properties justified.
On the other hand the Langevin´s method allows to search
for dynamic coefficients,i.e., the moments of the probability
distribution with no need to study the probability distribution
itself, as in the case of previous studies [13].

For the special case of the modified Galton board, the
changes were minimal in comparison with the values of the
parameter founded for the normal Galton´s board.

As a possible extension of this work we should note that
the Galton´s board gives effective friction coefficient to both
each bead size and each angle, however more complex fric-
tion coefficients can be investigated if the board is partially
filled of nails in accordance with specific rules of filled and
predefined concentrations for values greater than 20%. Cal-
culations of diffusion coefficients could be of great impor-
tance to future work.
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