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Drop shapes emerging at very low flow rates from thick-walled cylinders
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In this work we study the equilibrium shapes of drops that emerge slowly outside of vertical, thick-walled tubes. For low flow rates it is
possible to calculate drop shapes by using the balance equation between the hydrostatic and injection and capillary pressures. Through the
use of image processing software were obtained the center of mass and volume of the experimental drops and the qualitative agreement
between our experimental and theoretical results is very good.
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En este trabajo se estudia las formas de equilibrio de gotas que emergen lentamente de tubos de pared gruesa. Para gastos bajos es posible
calcular la forma de las gotas usando la ecuación de balance entre la presión hidrost́atica y la presíon de inyeccíon con la presíon capilar. A
través del uso de software de procesamiento de imágenes se obtienen resultados del centro de masa y el volumen de las gotas experimentales
y se encuentra una gran concordancia con los resultados teóricos.

Descriptores: Gota; efectos capilares; interacción con superficies.
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1. Introduction

The drop formation is a very common phenomenon in dif-
ferent branches of industry and its study has important prac-
tical consequences. Drop formation represents a basic phe-
nomenon important in a wide variety of industrial and natu-
ral processes. For instance, all spraying processes, dispers-
ing of pesticides, ink-jet printing and iron industry rely on
controlling drop sizes and contact angle for efficient applica-
tion. In the bibliography, two hydrodynamic mechanisms of
drop formation are known: Surface tension always causes the
breakup and is countered by the inertia of the liquid. [1–3].
The characterization of the drop shapes can be used to quan-
tify important properties such as surface tension,σ [2, 4, 5],
or the static contact angle,θ, formed between the inner liquid
and the substrate surface [1, 6]. In a general case the liquid
may has a good wetting whenθ < π/2 and it has a poor wet-
ting whenθ ≥ π/2, here we will analyze the drop shape for
both cases (see Fig. 1) [1–3,7].

One of the main motivations for considering the forma-
tion of drops in thick-walled tubes is the case where the de-
gree of wetting of the primary slag on the walls of a blast
furnace can change depending on the concentration of alu-
mina and iron oxides [3]. For example, in Fig. 1 shown in
the upper picture a drop of molten slag in a Mullite tube, in
this case the slag contains a mass of 0% iron oxides (poor
wetting), the slag drop in the lower picture contains a mass
of 33% iron oxides (good wetting). In both cases the inner

radius of the tube wasa = 2.0 mm, the outer radius of the
tube wasR=8.5 mm, and finally the tube wall thickness was
δ = 6.5 mm. The experimentation in this type of system is ex-
pensive and complex, but, in this work, detailed knowledge
of the experimental shapes by means of theoretical calcula-
tions give reliable results and avoids performing expensive
experiments.

This paper presents a theoretical and experimental study
of equilibrium shapes of liquid axisymmetric drops which
emerge from the thick-walled tube, for low flow rates,Q.
This method allows the exact calculation of the character-
istics drop shapes during their slow formation in ideal con-
ditions. The flow rate is so low that a new form of drop
formed with an angleθ does not depend on the shape of an-
other formed with the angleθ + ∆θ or θ − ∆θ. Formally,
for a viscous fluid, the condition of low flow rate in the drop
formation, can be expressed as the case where the capillary
number,Ca, obeysCa → 0. The capillary number is a mea-
sure of the magnitude of viscous forces to the surface ten-
sion forces and it is written asCa = µQ/σa2, whereµ is
the dynamic viscosity of the liquid anda is the inner radius
of the tube through which the fluid was injected. When the
liquid of densityρ, is considered inviscid fluid the dimen-
sionless flow rate is expressed in terms of the Weber number,
We = ρQ2/σa3, the Weber number is the ratio of kinetic
forces to surface tension forces. In this case the condition of
low flow rate occurs whenWe → 0.
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FIGURE 1. Picture of two drops of molten slag in a Mullite tube,
in the upper photo the slag contains a mass of 0% iron oxide (poor
wetting) in the lower picture it contains a mass of 33% iron oxide
(good wetting).

It is important to note the cases where the formation of
drops at high flow rates and the jets formation [1, 8, 9], will
not be considered in this work. It is also important to note that
the analysis of the ”pinch singularity” of the drop, is beyond
the scope of this work.

Here are discussed through experiments, various fea-
tures of the shape drops in function of the Bond number,
Bo = ρgR2/σ, whereg is the gravity acceleration andR
is the outer radius of the tube. The Bond number is the ra-
tio of the hydrostatic pressure to the capillary pressure (the
ratio of gravitational forces to capillary forces). IfBo > 1,
dominates the gravitational force on the capillary ones, while
if Bo < 1, dominates the capillary force. In the quasi-static
regime the study of the drop shapes is very similar to that
of bubbles [6, 10–15], thereforeθ plays an important role in
the drops formation, as it is well known to happen in bubbles
formation [16].

There is little work related to the problem of drop shape
when it emerges from thick-walled tubes, the study is of form
quasi-static [17],i.e. it assume thatWe → 0 in the non vis-
cous case.

The angle that takes the drop as it emerges from the top of
a tube and reaches the edge of this is the static contact angle,
however, increases in injection pressure leads to this angle

FIGURE 2. Schematie of the drop shape emerging in a thick
walled tube: (a) drop with good wetting (contact angle< π/2)
and (b) drop with poor wetting (contact angle> π/2).

may increase to a maximum valueθ + π/2 just before break-
ing, this case is discussed here through experiments. It does
not happen in the case of a drop that emerges in the direction
of the gravity force. When the drop emerges from below the
value of the angle do not change, this will be discussed later
in this work. The qualitative agreement between our experi-
mental and theoretical results is very good.

For our purpose the division of this paper is; in the next
section the problem and the equations for the free surface was
formulated in dimensionless form and in the Sec. 3 are dis-
cussed the experiments performed to verify the existing theo-
retical results. In the Sec. 4 the main conclusions and results
of this study are given.

2. Problem Formulation

We consider that a drop emerges, on the top or the bottom
of a vertical thick-walled tube. The drop is generated at a
very low flow rate so that, the drop shape can be described
by an equation of balance between the hydrostatic and injec-
tion pressure and capillary pressure,i.e., in this conditions the
drop remains in equilibrium and with the same shape. In this
case the description of the drop shape can be made by using
the Young-Laplace equation [1,2,7,10,11].

A scheme of the problem of slow injection (quasi-
static case) of a liquid in a thick-walled cylinder of inner
radiusa and outer radiusR = a + d is shown in Fig. 2.
On the drop surface the capillary pressure,pc, must be equal
to the sum of the liquid injection pressure,p0, hydrostatic
pressure,ρgz, and the atmospheric pressure,pa [1], i.e.,

pc = p0 − ρgz − pa. (1)

Note that the injection pressure, must be greater than the hy-
drostatic pressure ,i.e., p0 > ρgz when the drop emerges at
the top tube, if it emerges at the bottom tube these pressures
are added. The use of this condition allows the growth drop.
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Since equationpc = σ∇ ·n [18,19], wheren is a normal
unit vector to the outer drop surface, and withP = p0 − pa,
if

∇·n =
(

1
R1

+
1

R2

)
, (2)

whereR1 andR2 arethe radii of curvature.
We have that the dimensionless differential equation for

the free surface in cylindrical coordinates [1], is

−
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= p− ζ, (3)

wereξ = r/R, ζ = z/H andp = P/ρgH. R is the outer ra-
dius andH is the maximum drop height. The dimensionless
boundary conditions are

at ζ = 1 : ξ = 0 and
dξ

dζ
→∞,

at ζ = 0 : ξ = 1 and
dξ

dζ
= tan θ, (4)

and the dimensionless volume takes the form
1∫

0

ξ2(ζ)dζ =
V

πR3
. (5)

It should be noted that the static contact angle values are in
the range [θ, π/2 + θ] [17], the maximum angle is caused by
the injection pressure and takes this value just before break
of the drop.

Equation (3) is a highly nonlinear differential equation.
In the next section we present their solutions in some cases
of interest. The intention of the experiments is to prove that
Eq. (3) allows to calculateθ, ρ andσ. This is achieved if we
have two values and the third one is to be calculated.

3. Results and Discussion

In this section we discuss experiments and qualitatively com-
pare the experimental drop profiles to the theoretical shapes.
The experiments were performed using steel, silver and plas-
tic tubes and, water, silicone oil of different viscosities, trans-
mission oil and mercury as working fluids.

The slow growth of the drops was achieved by injecting
liquid through a hose connected to it with a liquid level just
above of the tube output. This method is suitable for the drops
formed from up or down.

The experiments were video recordered with a high
speed video camera model REDLAKE MotionXtra HG-
100K, from video images may also have the drop evolution,
from its formation to the ”pinch singularity”, but we are only
interested in the equilibrium drop shapes.

4. Solutions

4.1. Solution for the case Bo¿1

An important case of drop formation with analytical solution
of Eq. (3) occurs whenBo ¿ 1, i.e., the capillary effects
dominate over the gravitational. In this case the resulting dif-
ferential equation, obtained from Eq. (3), is

d2ξ

dζ2
=

1
ξ

[(
H

R

)2

+
(

dξ

dζ

)2
]

, (6)

thesolutions of this equation, with boundary conditions (4),
are spheres

ξ =

√
(
H

R
− tan α)2 − (ζ − tan α)2, (7)

whereα = θ − π/2.

When the effect of gravity is neglected the drop volume
can be obtained from Eq. (7) and (6). It gives

V =
1
3

(1 + sinα)2(2− sin α)
cos3 α

, (8)

FIGURE 3. Dimensionless maximum volume of a spherical drop as
a contact angle function.

FIGURE 4. Experimental profiles of spherical drops from poor and
good wetting.
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whereV is the dimensionless volume. Figure 3 shows the
plot of V as a function ofθ. Figure 3 is shown that the di-
mensionless drop volume grows significantly when the con-
tact angle increases,i.e., whenθ → 180◦, V →∞ this com-
pares with previous results as [17].

Figure 4 shows that the experimental profiles of three
drops in case of poor and good wetting, are spherical sec-
tions, the poor wetting case is made with water and plastic
and the good one is with silicone oil and plastic. In these
cases the Bond number value is small. In the poor wetting
case,Bo =0.0053 and in the good one case,Bo =0.018, and
the condition that liquid emerges from above or below does
not play an important role, during the experiment, the orien-
tation is neglected. The Bond number for small radii are also
small see Fig. 5. Note that the Bond number does not appear
explicitly in the solution (7). The Bond numbers used in the
experiments in Fig. 4 are very small and the drops are sphere
sections, where the volumes are determined by the contact
angle, in these casesθ = 130◦ andθ = 110◦ for the poor
wetting case andθ = 30◦ for the good wetting case.

FIGURE 5. Table of materials and data used in experiments.

FIGURE 6. Enlargement of a drop that emerges on top tube with
B0 À 1

4.2. Solution for BoÀ1 and H/R¿1

Other case of interest is whenBo À 1, i.e., the gravitational
effects dominate over the capillary ones andH/R À 1 (the
drop is flat). In this case the left hand side of Eq. (3) can be
neglected and the resulting equation is

ζ = p. (9)

In the Ec. (9) describes the profile of a very flat dimen-
sionless drop with height equal to the dimensionless pressure
p. Figure 6 schematically shows the drop shape under these
conditions. The approach to the edge of the drop profile de-
fine the important parameters in the analysis of the forces that
deform the drop.

Figure 6 shows that a force, per unit length, acting on the
drop is due to the hydrostatic pressure tends to expand later-
ally. Integrating this force from the base of the nozzle to the
maximum drop height,H,

H∫

0

ρgzdz =
1
2
ρgH2. (10)

Because the drop profile is in equilibrium, this force must
be equal to the force, per unit length, that limits the drop ex-
pansion. Such a force isσ cosβ + σ (see Fig. 4). Where
β = π− θ or β = θ, respectively, for poor and good wetting.
Finally, the forces balance gives us the equation

1
2
ρgH2 = σ cosβ + σ, (11)

the dimensionless equation for the equilibrium height is

H

R
∼ 2

√
cosβ + 1

Bo
. (12)

Equation (12) we can see that the dimensionless height
H/R is implicitly a function of angleθ and of the Bond num-
ber. We haveBo À 1 andcos β ≤ 1 thenH/R ¿ 1. This
can be checked with high Bond number values and different

FIGURE 7. Picture of two flat drops withB0 À 1 with two differ-
ent contact angles.
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contact angles. The experimental results are shown in Fig. 7
for cases of good and poor wetting, showing a picture with
two cases of a drop emerging from a cylinder with large
inner radius and with good and poor wetting, in the poor
wetting case, the tube is plastic and the liquid is water and
Bo =215.4, for good wetting was used a plastic tube and
silicone oil andBo =258.5.

When the Bond number is large the drop is flat and its
maximum heightH/R is small.

4.3. Solution for (dζ/dξ¿1 Small slopes)

In the case of good wetting,i.e. when the slope is small,
dζ/dξ ¿ 1 and therefore (dζ/dξ)2 ¿ 1.

To simplify the calculation, in the Eq. (3), for this case
the dimensionless heightζ is a function of the radiusξ, under
these new conditions the equation is

d2ζ

dξ2
+

1
ξ

dζ

dξ
= Bo(p− ζ), (13)

where the boundary conditions are

at ξ = 0 : ζ = H/R and
dζ

dξ
= 0, (14)

at ξ = 1 : ζ = 0 and
dζ

dξ
=

1
tan θ

. (15)

Thesolution for the Eq. (13) is

ζ(ξ) = pBo− 1
I1(1) tan θ

(1− I0(ξ)), (16)

whereI0, I1 are respectively the modified Bessel functions
of order zero and one. This solution corresponds to a drop
emerging from the top of the tube.

For the case when the drop emerges from the bottom, the
solution is

ζ(ξ) = pBo− tan θ(J0(ξ)− 1)
J1(1)

, (17)

FIGURE 8. Drop profiles emerging from a tube, plotted from the
Bessel solutions.

FIGURE 9. A picture of a drop in two equilibrium cases, where the
contact angle varies betweenθ to θ + π/2

whereJ0 andJ1 Bessel functions of order zero and one, re-
spectively. There are previous work with similar results, for
different cases [1].

In Fig. 8, shows two profiles of drops emerging of the
top (Eq. (16)) and a drop that emerges from the bottom
(Eq. (17)), this shapes were plotted from the solutions of
Bessel function, In the same figure it is shown the picture of
two silicone oil drops emerging up and down in a steel tube,
with Bo = 0.4085 andθ = 45◦ There is a good agreement
for small slope with analytical solution.

5. Analysis of the general forms

A drop growing at a low flow rate is considered in equilib-
rium and the only way to grow is a change in the injection
pressure. When the pressure changes, also change the drop
equilibrium conditions, in this case the change in the drop
volume is due to a change in the contact angle, which is pos-
sible to measure, and we know that the changes in angle are
from θ to θ + π/2 [17], figure 9 shows the case of a water
drop emerging in a steel tube and it can be seen that the angle
of the liquid with steel is90◦ at the beginning and then grows
to almost 180◦, hereBo =0.1216.

On the other hand, water drop emerging down with the
same conditions can be seen in Fig. 10, this case shows that
the contact angle value does not change by varying the injec-
tion pressure, the volume changes until the surface tension
permits. Analytical calculations given a good approximation
of the experimental results.

FIGURE 10. Series that shows the different equilibrium moments
of a drop with poor wetting, growing from of bottom part of a tube.
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FIGURE 11. Figure showing how from the drop picture you can
get the area and volume.

From the pictures taken from the experiments were fol-
lowed up at the drops mass centers emerging from the top
and below of the tube. The plots were made varying the in-
jection pressure and thus the volume of the drop.

With commercial software the picture is brought to a drop
of three-dimensional shape. Mastercam X4 and Rhinoceros
were used for evolve volumes, see Fig. 11 where showing ex-
amples of the drops emerging from the top tube (Fig. 11a) to
observe the shapes of black and white shapes (Fig. 11b) ax-
isymmetric drop shapes. In the same way you do for bottom
tube case.

With the use of the software above mentioned the mass
center of the drops emerging on the edge bottom follow a
curve similar to that of bubbles emerging up and with wall
effect, these forms depend on the Bond number in both case.
In Fig. 12 are shown the two cases, a) shows a bubble with
Bo=0.04 and the effect of the walls of a cone with an angle of
15◦, in Fig. 12b) is shown a drop with Bo=0.1216, the plot is
drawing so that the center of mass was comparable with that
of the bubble,i.e., will change the direction of the axis.

FIGURE 12. Mass center of a drop with poor wetting and growing
downward compared with the bubble dynamic.

FIGURE 13. Comparison of two drop volumes, the drops grow
with different boundary conditions on walls tube.

Finally we changed the boundary conditions on the walls,
the tube does not end at an angle of 90◦, instead we change
of the angle to 135◦ and the drop volume increases as seen
in Fig. 13, where the angle change achieved a remarkable
change in heightH and therefore a change in the drop vol-
ume. This is attributed to the sliding drop surface on the tube
wall and it maintains the contact angle betweenθ andθ+π/2,
and also the volume is growing, does not contradict the con-
dition for the angle is within this range.

6. Conclusions

In this paper we studied theoretically and experimentally, the
drop shapes that emerge slowly from thick-walled tubes. In
the first example, we gave the equation that models the drop
shape and we show some solutions of this equation. It in
several limits gives good approximations to the experiments
presented in each case. Results of experiments describe
the quasi-static drops shapes that emerge from thick-walled
tubes, the shapes are retrieved from pictures taken from the
experiments and then with the help of commercial software,
we found the mass centers and drops volumes. Through vari-
ous experiments we established that the drop shapes are heav-
ily dependent on injection pressure, the contact angle and the
Bond number. The experiments shown here describe qual-
itative and quantitatively the quasi-static drop shapes of the
studied cases. An important result is that from the equation
of the drop shape we have one of the parameters, given the
other two,i.e., you can get one of the three parametersθ, σ
or ρ given two of them.
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