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On super free fall
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Villermaux & Pomeau (J. Fluid Mech., vol. 642, 2010, p. 147) analysed the motion of
the interface of an inviscid liquid column released from rest in a vertical tube whose
area expands gradually downwards, with application to an inverted conical container
for which experimental measurements were carried out. An error in the analysis is
found and corrected in the present investigation, which provides the new governing
equation for the super-accelerated interface motion down gradually varying tubes in
general, and integrated results for interface trajectories, velocities and accelerations
down a conical tube in particular. Interestingly, the error does not affect any of the
conclusions given in the 2010 paper. Further new results are reported here such as
the equation governing the centre of mass and proof that the end point acceleration is
exactly that of gravity.
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1. Introduction
The super free fall work of Villermaux & Pomeau (2010, hereafter often simply

V&P) is revisited. The problem is as follows. Taking z as the upward coordinate, a
tube of cross-sectional area a(z) slowly increasing downwards is capped at the bottom,
where z = 0, and filled with a low-viscosity liquid to height z = h(0) with interface
exposed to the atmosphere. At t = 0 the cap vanishes and liquid flows out the end of
the tube into the ambient atmosphere.

V&P rederived the equation of Paterson (1983):(
a(h)

∫ h

0

dz

a(z)

)
ḧ+ 1

2

(
1− a (h)2

a (0)2

)
ḣ2 =−gh. (1.1)

Here g is gravity and z = h(t) is the height of the downward-moving upper free
surface.

The equation reported by Paterson (1983) was formulated for unsteady potential
flow in a tube composed of a long section of uniform cross-sectional area A1, which at
some low level gently varies to fixed cross-sectional area A0. Paterson assumed that the
level of the upper interface always remained in the section of uniform area A1, but this
restriction can be easily removed.
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The equation for the area-averaged vertical velocity in the tube used by both
Paterson (1983) and Villermaux & Pomeau (2010) is w(z, t) = a(h)ḣ/a(z), where an
overdot represents differentiation with respect to time. The evolution equation for the
height of the liquid is obtained by carrying this velocity to the momentum equation for
an inviscid liquid, ∂w/∂t + ∂(w2/2+ p/ρ + gz)/∂z= 0, and integrating along the tube
from z= 0 to z= h. The time derivative of w required in the momentum equation is

∂w

∂t
= a(h)

a(z)
ḧ+ 1

a(z)

da(h)

dh
ḣ2, (1.2)

and the momentum equation integrated along the tube gives the generalized Paterson
equation:(
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a(z)

)
ḧ+ da(h)
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∫ h
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dz

a(z)
ḣ2 + 1

2

(
1− a (h)2

a (0)2

)
ḣ2 =−gh. (1.3)

The second term on the right-hand side of (1.2), which leads to the middle term on the
left-hand side of (1.3), was neglected by V&P. This term is necessary to account for
the acceleration in variable-area sections of a tube and, for that reason, we denote it as
the variable-area temporal acceleration, or VAT acceleration for short.

A rough order-of-magnitude estimate shows that the coefficient of ḣ2 in the
middle term on the left-hand side of (1.3) is (da/dh)

∫ h
0 dz/a = O[(1a/hc)(hc/ac)] =

O(1a/ac), where ac and 1a are characteristic values of the cross-sectional area of the
tube and of its variation along the tube, say from the bottom to the initial height of the
interface, and hc is a characteristic value of that interface height. Therefore, the second
and third terms on the left-hand side of (1.3) are both of the same order when the
variation of a in the region of the tube containing the liquid interface is of the order of
a itself.

Equation (1.3) takes a simple form when the tube is a vertical cone of height
L with a small opening angle, α � 1. In this case a(z) = πα2 (L− z)2, giving∫ h

0 dz/a= (h/L)(L− h)/a(h) and, upon introducing the dimensionless variables

ξ = 1− h

L
and τ =

√
g

L
t, (1.4)

the governing initial-value problem

ξ̈ = 1
ξ
+ 1

2

[
1+ ξ + ξ 2 − 3

ξ

]
ξ̇ 2, ξ(0)= ξ0, ξ̇ (0)= 0 (1.5)

is obtained. Initial liquid heights 0< h(0) < L correspond to initial values 1> ξ0 > 0.
Using Paterson’s 1983 equation (1.1), Villermaux & Pomeau (2010) obtained

fundamental results for the motion of a liquid surface descending in an expanding
cone. These include determination of the initial acceleration and pressure gradient
at the free surface, and demonstration that the acceleration of the centre of mass
is initially less than gravity. V&P also presented an analysis of how the super-
acceleration triggers a Rayleigh instability of the free surface leading to the formation
of a nipple and a drop, and the relevance of this to wave breaking. We note at
the outset that none of these results are affected by neglect of the VAT acceleration.
However, as will be shown in the sequel, the position, velocity and acceleration of the
interface change significantly when this acceleration is retained.
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Following Villermaux & Pomeau (2010), the goal of the present investigation is
to determine the motion of the upper free surface in a slender, downward-opening
cone. In addition, we derive the equation governing the motion of the centre of the
decreasing liquid mass in the tube and prove that the accelerations of the interface and
centre of mass both tend to −g at the terminal moment when all liquid is exhausted
from the tube.

We begin in § 2 with new analytic results and numerical integrations for the
interface position, velocity and acceleration. This section ends with a detailed study
of the influence of the VAT acceleration on interface trajectory and acceleration. The
results of a laboratory experiment are compared with theory in § 3, and a discussion
and concluding remarks are given in § 4.

2. Analysis and numerical results
Equation (1.5) for the dimensionless position of the liquid interface ξ(τ ) is

autonomous and thus a reduction of order is ensured. In this manner a linear first-
order equation for ξ̇ 2 as a function ξ is obtained. Solution of this equation with the
condition ξ̇ 2 = 0 at ξ = ξ0 gives

ξ̇ =
[

2f (ξ)
∫ ξ

ξ0

dη
ηf (η)

]1/2

, f (ξ)= 1
ξ 3

exp
(
ξ + ξ

2

2
+ ξ

3

3

)
, (2.1)

which can be integrated again to obtain τ = τ(ξ, ξ0). However, numerical integration
of (1.5) using a fourth-order Runge–Kutta method is more appropriate for our
purposes here. Before presenting numerical solutions in § 2.4, further analysis of the
super free fall motion will now be given.

2.1. Singular behaviour for ξ0 = 0
The evolution of the free surface displays two distinct stages for small values of ξ0.
The velocity first increases from 0 to (2/3)1/2 in a short stage τ = O(ξ0) where the
acceleration is ξ̈ = O(ξ−1

0 ). Equation (2.1) can be simplified in this stage using the
approximation f (ξ) ≈ ξ−3, which gives ξ̇ = (2/3)1/2 (1− ξ 3

0 /ξ
3)

1/2 and, upon further
integration,

τ = (3/2)1/2 ξ0I(ξ/ξ0), I(ξ/ξ0)=
∫ ξ/ξ0

1

χ 3/2 dχ

(χ 3 − 1)1/2
. (2.2)

This is followed by a longer stage τ = O(1) where the evolution is given by solution
of the equation in (1.5) with the modified conditions ξ(0) = 0 and ξ̇ (0) = (2/3)1/2,
obtained from asymptotic matching with the first stage in the limit ξ0 → 0. The
terminal time τf at which ξ(τf )= 1 is τf ≈ 1.083 for this singular case.

2.2. Centre-of-mass motion
The height hcm and velocity wcm of the centre of mass of the liquid in the tube are
given by

Vhcm =
∫

V
z dΩ =

∫ h

0
za(z) dz, Vwcm =

∫
V

w dΩ =
∫ h

0
wa(z) dz= a(h)hḣ, (2.3a,b)

where V is the volume of liquid in the tube. The last equality, obtained from
the equation of continuity a(z)w(z, t) = a(h)ḣ, was found by Villermaux & Pomeau
(2010).
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The acceleration of the centre of mass is not simply dwcm/dt because V is not a
constant. To compute this acceleration, here denoted as acm, we consider the material
volume Vf enclosing the liquid mass m that is in the tube at a given instant t. This
mass is a constant. As time goes on, part of the liquid flows out of the tube, but not
out of the material volume Vf . The velocity of the centre of mass of the liquid in Vf is
given by mwcm =

∫
Vf
ρw dΩ at time t, and since m is a constant,

macm = d
dt

∫
Vf

ρw dΩ = d
dt

∫
V
ρw dΩ −

∫
Σb

ρw2 dσ, (2.4)

where Σb is the cross-section at the bottom of the tube and the last equality follows
from Reynolds’ transport theorem. Evaluation of the volume integral on the right-hand
side of (2.4) gives ρa(h)hḣ and the surface integral is ρa(0)w (0, t)2 = ρa (h)2 ḣ2/a(0),
so that

macm = d
dt
(ρa(h)hḣ)− ρ a (h)2

a(0)
ḣ2 = ρa(h)hḧ+ ρ

[
a(h)+ h

da(h)

dh
− a (h)2

a(0)

]
ḣ2. (2.5)

Using (1.3) to eliminate ḧ we find

acm =− gh2(∫ h

0
a dz

)(∫ h

0
dz/a

)

− 1− a(h)/a(0)∫ h

0
a dz

1
2

(
1+ a(h)

a(0)

)
h∫ h

0
dz/a

− a(h)

 ḣ2. (2.6)

Since initially ḣ = 0, it is clear that the first term of (2.6) gives the early-time centre-
of-mass acceleration, in agreement with the result reported as (3.17) in Villermaux &
Pomeau (2010).

2.3. Terminal acceleration
A simple analysis gives the interface acceleration at the terminal time tf , just when the
liquid in the tube is exhausted. This is achieved using the integral form of the vertical
momentum equation for the liquid in the tube (see e.g. Batchelor 1967, p. 138)

macm =−
∫
Σw

pnz dσ −
∫

V
ρg dΩ, (2.7)

where macm is given by (2.5), p is the pressure of the liquid referred to the
atmospheric pressure outside the tube, Σw is the surface of the tube wall in contact
with the liquid, and nz is the vertical component of the unit normal to this surface
(nz = α for a conical tube). The factor in square brackets in (2.5) is of O(h2) for small
h, as can be seen by Taylor-expanding a(h). The first term on the right-hand side
of (2.7) is the force the tube wall exerts on the liquid. Since the acceleration of the
liquid is finite, as must be the pressure gradient inside the liquid, dp/dz= O(ρg) <∞,
so that p = O(ρgh) and therefore − ∫

Σw
pnz dσ = O(ρgnza (0)

1/2 h2). Finally, the body
force for small h is − ∫V ρg dΩ ≈ −ρga(0)h. Therefore the dominant terms in (2.7)
are proportional to h and the h→ 0 balance gives ḧ(tf )=−g.
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FIGURE 1. Evolution of the interface position ξ − ξ0 for selected initial values ξ0. The
singular perturbation position for ξ0 = 0 is shown by the dot-dashed line and the pure free fall
trajectory given in (2.8) is displayed by the dashed line.

A similar small-h analysis of the centre-of-mass acceleration given in (2.6) can be
used to show that acm(tf ) = −g. Thus both the free surface and the centre of mass
experience Earth’s gravity at the moment when all liquid is discharged from the tube.
These results are independent of the cross-sectional variation of the tube area as long
as this area is a slowly varying function of z.

2.4. Numerical results
Numerical integrations of the initial-value problem (1.5) are now presented for initial
values ξ0 = 0.2, 0.4, 0.6, 0.8. Integrations are carried out to the terminal time τf

when all liquid is exhausted from the tube, corresponding to ξ = 1. Interface positions,
velocities and accelerations will be compared with pure free fall results, which, in
non-dimensional coordinates, are given by

ξ = τ
2

2
+ ξ0, ξ̇ = τ, ξ̈ = 1. (2.8)

Figure 1 shows the time evolution of the free surface, ξ − ξ0, at the selected values
ξ0. Each curve ends at the terminal time τf defined by ξ(τf )= 1. The results show that
the interface in the slowly expanding cone falls more rapidly than fluid in pure free
fall shown by the dashed line. The outer singular solution for ξ0 = 0 is also displayed
as the dot-dashed line. It is evident that trajectories for smaller initial values ξ0 cover
distances faster than for larger ξ0.

The time evolution of interface velocities plotted up to the terminal time τf in
figure 2 confirms, at each value ξ0, that the free surface velocities are always greater
than those for pure free fall indicated by the dashed line. Also included in this figure
is the outer singular solution for ξ0 = 0 plotted as the dot-dashed line. Higher liquid
fills (smaller ξ0) exhibit higher velocities at the early stages, but the situation may
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FIGURE 2. Evolution of the interface velocity ξ̇ for selected initial values ξ0. The singular
perturbation velocity for ξ0 = 0 is shown by the dot-dashed line and the pure free fall velocity
given in (2.8) is displayed by the dashed line.

reverse at later times, as illustrated by the intersection of the curve for ξ0 = 0.2 with
that for ξ0 = 0.4 at τ ≈ 0.87.

This curious feature may be understood by comparing the evolution of free surface
accelerations presented in figure 3. Here again the constant pure gravity acceleration
is displayed as the dashed line and the outer singular solution for ξ0 = 0 is plotted as
the dot-dashed line. All curves in figure 3 begin with a super-gravitational acceleration
equal to 1/ξ0, cross the dashed free fall line to sub-gravitational accelerations, and
then turn back to terminate at exactly gravitational acceleration as required (cf. § 2.3).
In particular, it is seen that, while the initial acceleration for ξ0 = 0.2 is high (ξ̈ = 5),
it attains significant sub-gravitational acceleration over a major portion of its evolution.
Since the range and intensity of the sub-gravitational acceleration for ξ0 = 0.4 are
small compared to those for ξ0 = 0.2, the velocity for ξ0 = 0.4 in figure 2 eventually
surpasses that for ξ0 = 0.2 before the ξ0 = 0.4 curve attains its terminal time.

We conclude this section by showing the variation of τf with ξ0 in figure 4. The
numerical results plotted by the solid dots are connected by straight lines, the lowest
and highest values of ξ0 being 0.01 and 0.995, respectively. The small terminal times
have been extrapolated to the obvious result τf = 0 at ξ0 = 1. The large terminal
times are seen to merge smoothly to the value τf ≈ 1.083 at ξ0 = 0 obtained from the
singular analysis given in § 2.1.

2.5. Influence of the VAT acceleration

The goal in this section is to compare results obtained from (1.1) and (1.3) for
conditions of the inverted cone experiment presented in table 1 of Villermaux &
Pomeau (2010) and, at the suggestion of a referee, to assess the relative importance
of the acceleration terms proportional to ḣ2. The exit radius is R(0) and the initial
height of the upper free surface is h(0), where the radius is R(h(0)). The cone for their
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FIGURE 3. Evolution of the interface acceleration ξ̈ for selected initial values ξ0. The
singular perturbation acceleration for ξ0 = 0 is shown by the dot-dashed line and the pure
free fall acceleration given in (2.8) is displayed by the dashed line.
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FIGURE 4. Emptying time τf as a function of ξ0. The computed values shown as solid dots
are connected by straight line sections and the result τf ≈ 1.083 obtained from the singular
analysis for ξ0 = 0 is shown by the open circle.

experiment has the geometrical properties

tanα = 0.03, R(0)= 0.033 m, β = 1− R(h(0))
R(0)

= 0.33, (2.9)
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FIGURE 5. Trajectories h1 and h2 computed from (2.10) for conditions of the V&P
experiment with and without the VAT acceleration straddle the trajectory obtained by
evolving the motion at constant super-acceleration ḧ(0) plotted as the short dashed line. Also
included is the centre-of-mass trajectory hcm. The arrow t2 marks the upper limit of the V&P
experimental data and the arrow t1 is the upper limit for which V&P compared their data to
the ḧ(0) trajectory in a log–log plot.

which are used to determine the initial fill height h(0) = 0.363 m and the height
L= 2.75 m to the apex. The dimensional equation governing interface motion obtained
from (1.3) may be written as

h(1− kh)ḧ− 2khḣ2 + 1
2(1− (1− kh)4)ḣ2 =−gh, (2.10)

wherein k = 1/L. The term −2khḣ2 in (2.10) is the contribution from the VAT
acceleration. Integrations of this equation with and without the VAT acceleration have
been carried out for the experimental value k = 0.9091 m−1 using g = 9.81 m s−2. We
denote the trajectories and accelerations obtained from (2.10) as h1 and ḧ1 and those
with the VAT acceleration missing as h2 and ḧ2. The h1 and h2 trajectories plotted
in figure 5 straddle the trajectory obtained assuming that the acceleration is uniform,
fixed at its initial value ḧ(0)=−g/(1−β)=−14.642 m s−2 shown as the short dashed
line. The computed terminal time tf is shortest for the h2 trajectory (0.207 s), increases
for the constant-ḧ(0) trajectory (0.223 s), and is longest for the h1 trajectory (0.240 s).
The vertical arrow at t2 = 0.16 s marks the upper limit over which Villermaux &
Pomeau (2010) reported data, and the arrow at t1 = 0.10 s is the upper limit for which
these data were compared to the constant-ḧ(0) trajectory. The centre-of-mass trajectory
hcm and its initial value for a cone computed from (2.3a),

hcm(t)= h

4

(
6− 8kh+ 3k2h2

3− 3kh+ k2h2

)
, hcm(0)= h(0)

4

(
6− 8β + 3β2

3− 3β + β2

)
, (2.11)

are also plotted in figure 5.
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FIGURE 6. Accelerations ḧ1 and ḧ2 computed from (2.10) for the V&P experiment with
and without the VAT acceleration straddle the initial acceleration ḧ(0). Also shown is the
centre-of-mass acceleration acm. Arrows mark extrema points in the evolution of acm and ḧ1.
The inset shows the ratio ḧ1/ḧ2 as well as the ratio |N1/N2| of the nonlinear terms defined
in (2.13).

Several things may be observed from the trajectories plotted in figure 5. First, the
(shifted) centre-of-mass trajectory starts with zero slope and increases to merge, as
required from the analysis in § 2.3, with the h1 trajectory at the terminal time. Second,
the percentage deviation between the h1 and h2 trajectories increases uniformly over
all time and attains the value 6.6 % at t1. Since the constant-acceleration trajectory lies
even closer to h1 than does h2, it is not surprising that Villermaux & Pomeau’s 2010
experimental data compare very favourably with the constant-acceleration trajectory in
the region 0.01 s 6 t 6 t1 over which their comparison was made. Consequently, for
this 0.363 m liquid fill level, one may take the 6.6 % deviation at t = t1 = 0.10 s as
the short-time limit for which the data of V&P are accurate; note at this point that
the liquid has descended only 20 % of its distance to the bottom of the tube. At later
stages in the free fall, interface deviations increase to 17 % at t2 and on to a maximum
value slightly over 31 % at the largest time tf = 0.207 s for which this comparison can
be made.

The third observation concerns the remark of Villermaux & Pomeau (2010) that the
nonlinear term proportional to ḣ2 in (1.1) increases the super-acceleration relative to
the initial acceleration at late stages. The acceleration ḧ2 plotted in figure 6 (introduced
in the following paragraph) indeed confirms this result. V&P also noted that their
experimental data exhibit a slowdown probably ‘. . . attributable to the friction of the
engulfed air at the upper tube opening . . . ’. Figure 5 shows that the ‘slowdown’ is
a real effect predicted by the h1 trajectory that includes the VAT acceleration and,
consequently, the above caveat about air entrainment is not necessary.

Now consider the evolution of interface accelerations ḧ1 and ḧ2. These accelerations
plotted in figure 6 are seen to be respectively higher and lower than the initial
acceleration value ḧ(0) plotted as the short dashed line. In addition, the centre-of-mass
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acceleration and its initial value determined from (2.6) for a cone,

acm(t)=− 1− kh

1− kh+ 1
3

k2h2

[
g+ k3h2

(
1+ 1

2
kh

)
ḣ2

]
,

acm(0)=− (1− β)g
1− β + 1

3
β2
,


(2.12)

are plotted as the long dashed line. For the Villermaux & Pomeau (2010) value
β = 0.33, acm(0) = −9.306 m s−2, only 5 % smaller in absolute value than g. Both ḧ1

and acm achieve an extremum at late stages. The minimum value acm = −9.828 m s−2

occurs at t = 0.189 s whilst the maximum value ḧ1 = −9.317 m s−2 occurs at
t = 0.203 s. In the inset of figure 6 the evolution of the ratio ḧ1/ḧ2 is plotted
beginning with its value of unity at t = 0. Since ḧ1/ḧ2 6 1, the trajectory h1 with
the VAT acceleration markedly slows down relative to the trajectory h2 with the VAT
acceleration omitted, as observed in figure 5.

Finally, we compare the relative magnitude of the nonlinear terms in (2.10)
proportional to ḣ2. For the cone experiment of Villermaux & Pomeau (2010), these
are denoted

N1(t)=−2khḣ2, N2(t)= 1
2(1− (1− kh)4)ḣ2. (2.13)

The ratio |N1/N2|, shown in the inset of figure 6 as the dashed line, decreases from its
initial value 1.654 to the dot at the terminal time tf = 0.240 s. One must bear in mind,
however, that N1 < 0 and N2 > 0 for all 0 < t < tf and thus the VAT term N1 acts
opposite to N2. It is recognized that both these terms are initially zero. Nevertheless,
since |N1/N2|> 1, the influence of the nonlinear VAT term dominates for all t > 0.

3. Experiments
A series of experiments on the super-accelerated flow down inverted cones were

undertaken using three conical glass tubes. Though more than five experiments were
performed, and observations of the nipple formation were recorded, for the sake of
brevity we report here only one experimental result. The tube for this experiment had
lower diameter D1 = 2.5 cm, upper diameter D2 = 4.7 cm and length 22.0 cm, from
which we calculate α = 2.85◦ and L = 47.0 cm. The working liquid was ethanol of
density ρ = 810 kg m−3 and kinematic viscosity ν = 1.52× 10−6 m2 s−1. The value of
gravity at Azcapotzalco where the experiments were conducted is g= 9.779 m s−2.

Using silicone rubber cement, the tube was securely mounted on top of a horizontal
clear acrylic plate 1 cm thick, the tube being aligned with a hole of diameter D1

drilled in the plate centre. A balloon inflated to near bursting pressed against the
bottom surface of the plate using a scissor jack. After pouring liquid into the cone
from above, application of pressure by the scissor jack forced the balloon to spread
evenly over the bottom plate surface. The experiment was initiated by pricking the
balloon with a sharp object.

One side of the glass cone was marked at 1 cm intervals with an indelible black
ink pen. The movement of the upper free surface was recorded with a Red Lake
model HG-100K/HG-LE high-speed camera at 500 frames per second. Experiments
showed that the time for balloon rupture is less than 0.002 s. The location of the
bottom of the curved ethanol interface was measured at selected times, interpolating to
the nearest 1 mm between the 1 cm marks. The initial time was taken to be that for
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FIGURE 7. Experimental data for the interface trajectory at ξ0 = 0.7 are compared with the
trajectories obtained from integration of (2.10) with (solid line) and without (dot-dashed line)
the VAT acceleration. The trajectory for pure free fall is shown as the dashed line. The
experimental data measured by two of the present authors (A.T. and P.D.W.) are shown by the
solid and open circles, respectively.

which the data best fit theory. Figure 7 shows a comparison of measurements obtained
from the same video by different investigators with theoretical trajectories computed
using (2.10) with (solid line) and without (dot-dashed line) the VAT acceleration term
−2khḣ2. The results are also compared with the trajectory obtained for pure gravity
given by the dashed line. While the trajectories with and without the VAT acceleration
term are in good agreement up to t ≈ 0.06 s, the results diverge considerably at late
times as indicated in figure 7.

4. Discussion and conclusion
The theoretical model developed here corrects a peccadillo in the work of

Villermaux & Pomeau (2010) who used equation (1.1) of Paterson (1983), which
neglects the VAT acceleration. The generalized Paterson equation (1.3) presented
here applies to potential flow down a vertical tube when the upper free surface
traverses gradually varying tube sections, be they expanding or contracting. The
interface trajectories for an inverted cone exhibit qualitative differences when the
VAT acceleration is retained: trajectories with (without) the VAT acceleration for a
cone evolve more slowly (rapidly) than trajectories obtained where the acceleration is
uniform, fixed at its initial super-accelerated value ḧ(0)=−g/(1− β).

Experiments on the evolution of free surface trajectories in inverted cones verified
the formation of a nipple on the liquid interface. The results displayed in figure 7
comparing trajectories obtained from (1.1) and (1.3) for a cone show that inclusion of
the VAT acceleration gives results in essential agreement with experiment. Fortunately,
the oversight of Villermaux & Pomeau (2010) in applying Paterson’s equation to an
inverted cone does not affect the fundamental results they report, only the details
of the time evolution of the free surface. Thus their results for the initial pressure
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gradient at, and acceleration of, the upper free surface remain correct, as does the
elegant proof that the initial acceleration of the centre of mass is less (in absolute
value) than gravity. Moreover, their analysis of the Rayleigh–Taylor instability of the
upper free surface and the evolution to drop formation also remains intact.

In addition to the parametric study obtained from integration of the generalized
Paterson equation for a cone given in figures 1–3, the new results presented in this
study are: (i) a determination of the singular solution for ξ0 = 0; (ii) analysis of the
centre-of-mass motion for tubes of arbitrary slowly varying cross-section; (iii) analysis
of the terminal accelerations of the liquid interface and the centre of mass showing
that they both tend to −g as t→ tf ; and (iv) a comparison of the effects of interface
motion with and without the VAT acceleration.
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