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Super free fall of a liquid layer in a semi–infinite cone
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In this work the super free fall problem of a very low viscosity mass of liquid which fills partially a section of a
long vertical conical pipe is analyzed theoretically, by means of the use of an inviscid and one-dimensional model, the
simultaneous and peculiar motion of both two liquid interfaces when the liquid layer is moved from the rest is described.

1. Introduction
Building in the original analysis of Paterson,1) it has been

recently shown that the upper free surface of a liquid column
filling a vertical pipe of downward increasing radius reaches
super free fall.2–4) It was demonstrated that when a liquid col-
umn filling a pipe shaped as an inverted cone of overall open-
ing angle is suddenly released by abruptly opening the lower
end of the pipe, the surface of the liquid experiences an ini-
tial stage super gravitational acceleration followed by a stage
of a sub-gravitational acceleration and a final acceleration in-
crease to exactly gravitational at the end of the discharge.3) In
the case of pipes with abrupt changes of section (intercon-
nected pipes of different radii), the liquid surface can achieve
persistent accelerations several times larger than the gravity
acceleration g, and the acceleration is larger from smaller lev-
els of filling in the upper pipe.4) This rich dynamics of con-
fined systems contrast with that is observed when an initially
confined mass of liquid is suddenly released to the ambient,
as in the rupture of a water-filled rubber-ballon.5) Then the
mass of liquid falls initially following the law of gravitation
until disintegrates into smaller droplets. The super free fall
of a liquid also resembles the purely rigid body mechanical
problem of super free fall of the tip of a chain released from
the rest under gravity, either when the chain is initially hang-
ing vertically or when it is folded horizontally.6)

In this work we analyze the fall of a finite mass of liquid
initially at rest in an infinitely long inverted conical tube. The
main difference with the configurations of2–4) is that now the
liquid never leaves the tube. It is bounded by upper and lower
surfaces whose evolution must be described. However, since
an algebraic relation exists between the mean levels of the two
surfaces, expressing the condition that the volume of liquid
between them is constant, it suffices to describes the evolu-
tion of one of the surfaces. This is done with the approxima-
tions of inviscid quasi-unidimensional flow by means of an
evolution equation derived in the spirit of Patterson’s analy-
sis,1) though the result differs of Patterson’s equation owing to
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the different boundary condition of our problem, and are due
to the correction discussed in.3) The derivation is presented
by a conical tube, but the extension to other cross-section is
straightforward. Results of an experimental visualization of
the evolution of ethanol in a conical tube with an opening
angle of 3◦ are presented and compared with the numerical
results.

Fig. 1. Scheme of a semi-infinite vertical conical pipe containing a finite
volume of an inviscid liquid. The initial position of both lower and upper
interfaces are H2(0) and H1(0), respectively..

2. Theory
Consider a long vertical tube shaped on an inverted cone

of semi-angle θ ≪ 1◦. The tube is open at both ends and
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contains a volume V of a liquid which is initially at rest and
extends between two horizontal section at distance H2(0) and
H1(0) > H2(0) from the vertex of the cone, as sketched in
Fig. 1. The quasi–unidirectional motion of a liquid in the tube
obeys the mass and momentum conservation equations.
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where z is the vertical distance measured downward from
the vertex of the cone, t is the time, u and P are the ve-
locity and pressure of the liquid, ρ is the density of the liq-
uid, g is the acceleration due to gravity, and viscous effects
has been neglected. Let H1(t) and H2(t) denote the advance
from the lower and upper surfaces of the liquid from the ver-
tex cone. Then u = dH1/dt, P = Pa at z = H1,
u = dH2/dt, P = Pa at z = H2,

u = 0, H1 = H1(0), H2 = H2(0) at t = 0 (3)

where Pa is the pressure outside the liquid and surface ten-
sions has been neglected. Equation (1) can be immediately
integrated to give, with the condition (3) at the liquid surface,
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From the second equality, after using the initial condition (3),
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which expresses the condition of conservation of the liquid
volume. Carrying (4) to the momentum equation (2), inte-
grating the resulting equation from z = H1, to z = H2
and using the boundary conditions (3) for the pressure, we
find, after some algebra
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Equations (5) and (6) determine the function H1(t) and
H2(t). After these functions are computed, Eq. (4) gives the
velocity of the liquid, while the pressure is given by
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which is obtained by integrating (2) between z = H2 to a
generic value of z. Introducing the dimensionless variables
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Eqs. (5), (6) and (7) take the dimensionless form
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with

ξ = ξ0,
dξ
dτ
= 0 at z = 0 (12)

The solution which is computed numerically, depend on the
single dimensionless parameter

ξ0 =
H2(0)

H1(0) − H2(0)
. (13)

Equation (10) reduces to the corrected Paterson’s equation for
a conical tube given in3) when η is set to 1.

3. Numerical Results
After eliminating η with the help of Eq. (9), the remaining

second order ordinary differential equation (Eq. 10) was sim-
ply broken in a system of two first-order differential equations
and conveniently integrated numerically with the method de-
scribed in.7)

Three non–dimensional cases were analyzed here, a) ξ0 =
0.82, η0 = 1.82, b) ξ0 = 1.16, η0 = 2.16, and where ξ0 =
2 and η0 = 3 which corresponds to the non–dimensional
value of the interfaces position reported in §4, its important
to notice that all of these cases have a constant ∆H = 1.0.

Interfaces positions, velocities and accelerations can be
conveniently compared with the Uniformly Accelerated
Movement equations, which ones, with the dimensionless pa-
rameters introduced in §2 take the form: z̃ = τ2/2, ˙̃z = τ,
¨̃z = 1.

The time evolution of the free interfaces velocities (plotted
in Fig. 2) clearly shows that at early stages of the movement,
the upper free surface velocity moves faster than free fall, and
in opposite way the lower free surface begins to move slower
than free fall, but at later stages of the movement the change
of direction of the velocity curves indicates that upper inter-
face begins to decrease its velocity and lower interface raises.

In Fig. 3 the accelerations of the upper free interfaces (for
the three selected cases) were plotted as a function of time
and indicates that the instantaneous accelerations reached by
the upper free surface decreased to values below the free fall
to finally accelerate at later stages of the movement. In other
hand, in Fig.4 the lower interfaces begin the movement sub–
accelerated and during the development of the phenomena,
increase its acceleration at values above the free fall for fi-
nally decelerate to reach the free fall acceleration. In Fig. 5
the expression for the non–dimensional dynamic pressure in-
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Fig. 2. Evolution of the interfaces velocity (for the selected cases ξ̇ and η̇)
compared with free fall velocity.

Fig. 3. Dimensionless plot of the acceleration of the upper free surface (for
three selected cases) as function of time.

troduced in Eq. 7 was plotted as a function of time for the
same selected cases introduced in § 3. It is important to no-
tice that the hydrostatic pressure (which is defined as a liquid
height) is given by ξ − η = 1, but when the liquid layer leaves
the rest at τ ≫ 0, this static pressure converts instantly in a
dynamic pressure due mainly to the influence of the last term
in Eq. 11.

Fig. 4. Dimensionless plot of the acceleration of the lower free surface (for
three selected cases) as function of time.
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Fig. 5. Dimensionless plot of the dynamic pressure evolution of the liquid
layer (for three selected cases).

4. Experiments
Several qualitative experiments were conducted with

a glass conical tube of small angle of cone θ= 3◦,
which is 0.48 m long, with upper diameter D2 = 0.03 m
and D1 = 0.053 m lower diameter. The working fluid
was ethanol, density ρ= 810 kg/m3 and kinematic viscosity
ν= 1.52×106 m2/s. The value of the gravity acceleration at
Azcapotzalco (Mexico City) is g = 9.779 m/s2. The tube was
mounted over a drilled acrylic sheet and fixed with silicon
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Fig. 6. Snapshots of development of the experiment, darkest zones repre-
sents the liquid slice of ethanol, and the grey region is the balloon film. Times
from left to right are t= 0/500, 42/500, 59/500 s respectively.

Fig. 7. Plot of the numerical computations for the position of upper in-
terface H2(t) − H2(0). It corresponds to H2(0) = 0.28 m (solid line) and
H1(0) = 0.42 (dashed line) and is compared with its respective experimental
values and 5% error bars are also plotted. The dotted curve indicates free fall.

cement. For the series of experiments conducted here, the
liquid layer had a height of ∆H = 0.14 m, the upper interface
was located at a distance H2= 0.28 m from the apex of the
cone and the lower interface at a distance H1= 0.42 m. An
air inflated balloon was placed below the liquid to hold it in
place, and the experiment was initiated by tearing the balloon
with a sharp cutter. The initial lower surface is slightly de-
formed due to the presence of the balloon (see Fig. 6), also it

is noticed a rubber film adhered to the wall of the pipe dur-
ing the rupture of the balloon. All this makes a little difficult
to observe the evolution of the lower liquid surface, but the
evolution of the upper surface can be clearly recorded. To
this end, the conical wall of the tube was marked each 0.01 m
and the movement of each interface was recorded with a high

speed camera Red Lake model HG-100K/HG-LE at a rate of
500 fps. Figure 6 shows a sample sequence of recorded im-
ages. A commercial software was used to extract the position
of the surfaces from the images and compare them with the
numerical solution. Figure 6 shows the results of the experi-
ments and the numerical computations.

5. Conclusions
The problem of a liquid falling down an inverted cone is

revisited. The cone of a finite volume of liquid in a semi-
infinite tube is considered. The equation originally derived
by Paterson,1) corrected as in Torres et al.3) and particularized
for a conical tube, is extended to take into account the bound-
ary condition of this case and deal with the two liquid surfaces
present in the tube. The approximations if inviscid and quasi-
unidirectional flow are used. The problem is shown to depend
on a single dimensionless parameter which is the inverse of
the ratio of the length of the tube initially occupied by the liq-
uid to its distance to the vertex of the cone. The evolution of
the upper and the lower surfaces is compared for different val-
ues of this parameter, and the periods of super acceleration of
each surface are identified. New experiments have been car-
ried out with ethanol in a conical tube with an opening angle
of 3◦. The results are in good agreement with the numerical
computation and show the formation of the peculiar nipple
observed earlier at the upper surface of the liquid.
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