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Abstract. In this paper we have analyzed theoretically the super free
fall of a near inviscid mass of liquid, which fills partially a small section
of a very long vertical conical pipe. Through the use of a one-dimensional
inviscid model, we describe the simultaneous and pecular motion of the
two interphases of the liquid.
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1 Introduction

Recently, it has been shown that the upper free surface of a liquid column fill-
ing a cylindrical pipe of short length, but increasing radius, reaches super free
fall [1–3]. In fact, it was demonstrated that when a liquid column, in a slowly
expanding conical pipe is suddenly released from the rest, by opening abruptly
its bottom exit and all liquid is exhausted from the tube, the upper free surface
reaches initially a super gravitational acceleration, then the acceleration becomes
sub-gravitational, and finally it turns back to terminate at exactly gravitational
acceleration as required [2]. In the case of pipes with a sudden expansion (inter-
connected pipes at different radii) the upper free surface can achieve persistent
accelerations several times larger than the gravity acceleration g, and the accel-
eration is larger for smaller levels of filling in the upper pipe [3]. All the previous
rich dynamics in confined systems contrast with those where an initially con-
fined mass of liquid is suddenly released to the ambient due to the explosion
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of a water-filled rubber-balloon [4]. Thus, such a mass of liquid falls initially,
and thereafter, it disintegrates into smaller droplets. Incidentally, the super free
fall in liquids also recalls the purely-mechanical problem of the super free fall of
the tip of chains falling under the gravity action in two main configurations: a
vertically hanging chain released from rest and an horizontally folded chain [5].
In this work we analyze theoretically, based on a slender slope approximation,
the problem of the super free fall of a specific volume of low viscosity liquid
contained in a conical pipe of very large length which is supposed to be released
from the rest at any part of it. Since the mass of liquid never leaves the pipe,
we conceptualize such configuration as a liquid slice in a semi infinite cone. This
simple system allows us to predict the dynamic behavior of both upper and lower
free interfaces, during the overall history of the flow (while the liquid slice does
not desintegrates due to their extreme thinness). In the last part of this commu-
nication we discuss the realization of a qualitative experiment to visualize the
dynamic evolution of the liquid slice. Finally, we give the main conclusions.

Fig. 1. Scheme of an idealized semi-infinite cone. The liquid frustum is bounded by
H1(0) and H2(0).

2 Theory

Ideally, a semi-infinite conical pipe model has an infinite length and consequently,
in any part of this pipe and under this configuration the radius is always increas-
ing downwards along the flow direction. Here, we consider a finite volume of qui-
escent liquid confined at any part of the semi-infinite vertical cone by conforming
a conical frustum (i.e., a cone initially sliced by two horizontal parallel planes),
both interfaces of the frustum are opened to the atmosphere at z = H2(0) and
z = H1(0), respectively. Subindex (0) indicates initial positions. A scheme of the
problem can be seen in Fig. 1. These two distances are taken in reference to the
apex of the cone. This quasi-unidirectional model of motion of a liquid volume
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contained in a semi-infinite tube obeys the mass and momentum conservation
equations.
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where z is the vertical distance measured downward from the apex of the cone,
t is the time, u and P are the velocity and pressure of the liquid, ρ is the
density of the liquid, g is the gravitational constant, and viscous effects have
been neglected. Let H1(t) and H2(t) denote the position of the lower and upper
surfaces at anytime during the movement. Then u = dH1/dt, P = Pa at z = H1,
and u = dH2/dt, P = Pa at z = H2,

u = 0 , H1 = H1(0) , H2 = H2(0) at t = 0, (3)

where Pa is the pressure outside the liquid and surface tensions have been
neglected.

Equation (1) can be immediately integrated to give
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From the second equality, after using the initial condition (3), we obtain
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2(0), (5)

which expresses the condition of conservation of the liquid volume.
Carrying equation (4) into the momentum equation (2), integrating the

resulting equation from z = H1 to z = H2 and using the boundary conditions
(3) for the pressure, we find, after some algebra
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which is obtained by integrating (2) between z = H2 to a generic value of z.
Introducing the dimensionless variables
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Equations (5) and (6) take the dimensionless form:

η3 − ξ3 = 1 + 3ξ0 (1 − ξ0) , (8)
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with
ξ = ξ0 ,

dξ

dτ
= 0 at z = 0. (10)
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Now this final solution depends on the single dimensionless parameter

ξ0 =
H2(0)

H1(0) − H2(0)
. (11)

3 Numerical Procedure

To obtain a numerical solution, after eliminating η by using Eq. (8), the resulting
nonlinear second order equation (9) can be simply broken in a set of two stiff
ordinary differential equations which will be numerically integrated by using
Gill’s method [7]. This method was developed from the general theory given by
Kutta [8] and was chosen for this work because it is capable to reach fourth-order
accuracy with the use of minimum storage registers. As mentioned in Blum [8]
the two advantages of implementing Gill’s method are: first, it only requires
3n + B storage registers whereas the standard Runge-Kutta method requires
4n+B, where n refers to the number of coupled first-order differential equations
and B is a constant; second, under Gill’s method scheme the computation can
be arranged and the rounding errors can be reduced significantly.

The celebrated subroutine introduced by White [6] was rewritten into a con-
venient from under the Fortran�95 standard, and the resulting project was com-
piled with the Absoft Pro Fortran�16.0.2 which is suitable to handle the proper

irrational constants of Gill’s method e.g., A =
√

1
2 = 1.7071067811865475244

with an explicit length declaration.
In order to estimate the development of the interphase acceleration we have

chosen the next ΔH value at τ = 0: ξ(0) = 0.2 and η(0) = 1.2. Those initial
conditions were measured from the apex to every single interface conforming the
height of the liquid frustum.

Fig. 2. Spatial evolution of both non-dimensional upper and lower free surfaces at
initial conditions of filling ξ0 = 0.2 and η0 = 1.2.
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Fig. 3. Evolution of both upper and lower free interfaces ξ̇ and η̇ as a function of time.

As seen in Fig. 2 each free interface presents a similar behavior when this
liquid column is suddenly released from the rest; it is apparent that the distance
between interfaces decreases until a minimum distance is reached. According to
Figs. 3 and 4 it is possible to conclude that at the beginning of the movement
the upper free surface ξ starts to move faster than η and at later stages of the
movement, both surfaces ξ and η will reach the pure free fall acceleration.

Fig. 4. Evolution of both, upper and lower interface acceleration as a function of time
at initial conditions of filling ξ0 = 0.2 and η0 = 1.2.
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4 Conclusions

The theoretical model based on the slender slope theory presented here, predicts
the behavior of the free interfaces that conform a liquid frustum, which ideally
lies in any part of a semi infinite cone and its suddenly released from the rest.
The method used for the numerical computations reported here was originally
designed in order to use efficiently every single storage space of the memory unit
of the machine.
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