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for a small range of amplitudes. In this case, the wave field 
is dominated by oscillating blobs that interact on the cap-
illary–gravity scale. A Pearson correlation analysis of the 
recorded videos shows that for all ordered patterns, the sur-
face waves are periodic and correspond to Faraday waves 
of dominant frequency equal to half the excitation fre-
quency (i.e., f = F∕2). In contrast, the oscillons formed for 
14 < F ≤ 23 Hz are at the first subharmonic ( f = F∕2) and 
first harmonic ( f = F) response frequencies, with higher 
harmonics being negligible or absent as in most cases. The 
disordered wave fields forming at F > 23 Hz are not sub-
harmonic and correspond to periodic harmonic waves with 
f = nF∕2 (for n = 2, 4,…). We find that the experimentally 
determined minimum forcing necessary to destabilize the 
rest state and generate surface waves is consistent with a 
recent stability analysis of stationary solutions as derived 
from a new dispersion relation for time-periodic waves 
with nonzero forcing and dissipation.

1 Introduction

When a vessel containing a fluid is submitted to periodic 
vertical oscillations, standing waves appear on the surface 
of the fluid for a range of frequencies and amplitudes of the 
forcing oscillations. These waves, called Faraday waves or 
standing gravity waves (Faraday 1831; Benjamin and Ursell 
1954), are parametrically excited when the vertical oscilla-
tions are above a critical frequency, Fc, or critical forcing 
acceleration, �c. The oscillating parameter is the apparent 
gravity, which, in the reference frame moving with the ves-
sel, is

(1)g(t) = g[1 + � cos(�t)],
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where � = A�2∕g is the dimensionless forcing, g the 
acceleration due to gravity in the reference frame of the 
laboratory, A the amplitude, �(= 2�F) the angular fre-
quency, and F the linear frequency of the driving force. 
Faraday (1831) first noted that the waves that appear on the 
fluid surface are at the first subharmonic of the excitation 
frequency, f = F∕2.

The Faraday instability has been studied extensively 
over decades, both theoretically (Benjamin and Ursell 
1954; Miles 1984; Miles and Henderson 1990; Miles 
1993; Bechhoefer and Johnson 1996; Müller et al. 1997; 
Müller 1998; Mancebo and Vega 2002; Huepe et  al. 
2006; Périnet et  al. 2009, 2012) and experimentally 
(Douady 1990; Edwards and Fauve 1994; Bechhoefer 
et  al. 1995; Kityk et  al. 2002; Westra et  al. 2003; Resi-
dori et  al. 2007; Nguyem and Caps 2011) for the study 
of pattern formation. From an appropriate choice of the 
experimental parameters, several distinct patterns can 
be observed, consisting of a set of ordered geometrical 
figures like stripes, squares, triangles, and hexagons. 
Superlattice patterns Kudrolli et al. (1998) and localized 
structures Arbell and Fineberg (2000, 2002) have also 
been observed using two-frequency forcings. Understand-
ing the types of patterns that form is challenging. The 
threshold for instability and the observed patterns depend 
on the fluid’s viscosity and surface tension, the forcing 
acceleration � , and the shape and size of the vessel. In 
addition, fluctuations in the frequency and amplitude of 
the driving force may bring an existing pattern to a mixed 
state with a fraction of spatiotemporal chaos (Kudrolli 
and Gollub 1996). In the limit of weak dissipation, the 
results of classical Faraday experiments have mostly been 
understood on the basis of linear analyses (Müller 1998) 
for a spatially infinite liquid bath. Moreover, the mecha-
nisms of pattern selection have been investigated using 
the tools of symmetry and bifurcation theory (Silber et al. 
2000; Skeldon and Guidoboni 2007). Numerical simula-
tions, involving the solution of the Navier–Stokes equa-
tions coupled to a front-tracking method for treatment of 
the free surface, have also started to appear by assuming 
that the liquid surface is perfectly flat at the edge of the 
lateral walls where no-slip boundary conditions apply 
(Périnet et  al. 2009). However, these do not account for 
realistic experiments where the meniscus dynamics is 
important (Douady 1990). In particular, for small-size 
containers a strong coupling exists between the capillary 
waves generated by the meniscus and the Faraday waves 
(Nguyem and Caps 2011).

Whereas traditional experiments on Faraday wave pat-
terns refer to single containers of varied sizes and shapes, 
Delon et  al. (2010) observed the formation of regular 
patterns in the case where the liquid–air interface was 

split over a network of square cells. This kind of experi-
ments has been found to have potential applications for 
the detection and location of liquids in internal cavities of 
cellular–core sandwich structures employed in mechani-
cal and aeronautical constructions. Usually, the cells 
are made to define a regular grid and may have differ-
ent geometries, the most commonly employed being of 
hexagonal shape so that the cellular structure resembles 
a beehive honeycomb. A long-standing problem, which 
is also considered to be a major defect of the structure, 
is the presence of liquid in the cells. Apart from differ-
ent existing methods, one promising technology to locate 
where the liquid is and quantify its amount is based on 
inducing Faraday waves on the surface of the liquid by 
means of an excitation wave generation device (David 
et al. 2010). The dynamics representative of the wave pat-
terns that arise in regular cell networks are also of help to 
understand the assembly patterns of cell spheroids in the 
bioengineering of three-dimensional tissue and organoid 
constructs, where a recently developed technology has 
shown that initially randomly distributed cell spheroids 
in a vibrated fluidic environment assemble into prede-
fined patterns at the nodes of standing waves (Chen et al. 
2015). This way, assembly patterns of cell spheroids of 
different symmetric modes can be predicted by the cor-
responding wave functions.

In the experiments of Delon et  al. (2010), after a tran-
sient state, just above the Faraday threshold, neighbor 
cells are seen to collaborate synchronously to form a liq-
uid peak at their common intersections, giving rise to a 
regular square lattice over the entire network for exciting 
frequencies in the range between 10 and 16 Hz. Similar 
experiments conducted by Peña-Polo et  al. (2014) over a 
network of small equilateral triangular cells have shown 
that changing the grid geometry from square to triangular 
adds an extra degree of freedom for wave interaction, dou-
bling the number of patterns that form and extending the 
range of frequencies (10 ≤ F ≤ 28 Hz) for which collective 
cell behavior is observed.

In particular, whereas Delon et  al. (2010) experiments 
provide only a limited and qualitative view of the paramet-
rically forced surface waves, here we (a) extend the range 
of frequencies (F) and amplitudes (A) of the driving force, 
(b) perform a finer sweep of the parameter space (A,F) to 
determine the regions that separate the synchronous for-
mation of regular patterns from those where single oscil-
lons form synchronously and where disordered wave fields 
appear within individual cells, (c) provide a quantitative 
picture of the parametrically excited waves in terms of a 
Pearson correlation analysis to determine their spectrum of 
mode frequencies, and (d) compare the experimental results 
with the traditional dispersion relation of free unforced 
waves and the dispersion relation of Faraday waves for 



Exp Fluids  (2017) 58:47  

1 3

Page 3 of 11  47 

nonzero forcing and dissipation derived by Rajchenbach 
and Clamond (2015). Here, we deal only with a square cell 
network because of its simplicity and leave more complex 
geometries, as the triangular and hexagonal ones, for future 
studies.

2  Experimental setup

The experimental setup consists of a transparent acrylic 
vessel with a horizontal square base of size 25 × 25 
cm2 and height 5 cm fixed rigidly to the table of a TIRA 
TV51075 shaker that can deliver a maximum force of 75 N 
with peak-to-peak amplitude oscillation of 1 cm. A white 
styrene grid composed of 81 square cells of sides l = 2.5 
cm and height h = 1.5 cm each is fixed to the bottom of the 
vessel. The cells are filled with distilled water doped with 
methylene blue up to a depth of d = 0.7 cm. All cells have 
at their bottom side a small circular hole of diameter 0.5 
mm to ensure the same level of liquid over the entire grid. 
With these parameters, the total payload was ≈1.6 kg and 
the maximum allowed dimensionless peak-to-peak accel-
eration was � ≈ 4.55.

The shaker is driven using a control software installed in 
a host computer from which we input a value of the ampli-
tude, A, and frequency, F. The input frequency is received 
by a VR8500 controller connected to the computer, which 
generates an output sinusoidal signal. The output signal 
is amplified with a power amplifier and transmitted to the 
shaker. The amplitude is measured by means of a piezoelec-
tric accelerometer fixed onto the shaker table and connected 
to the controller, which receives an oscillating voltage from 
the accelerometer and transforms it into a sinusoidal signal. 
The signal is checked to give the desired amplitude by a 
multifunctional data acquisition board and processed by the 
host computer, where a software is run to provide the oscil-
lation amplitude in millimeters and the frequency in Hz. 
The quality of the acceleration was checked by measuring 
the calibrated signal from the accelerometer at frequencies 
in the range 10–22 Hz and peak-to-peak amplitudes from 
0.2 to 6 mm. No discernible higher harmonics of the sig-
nals were observed from their power spectrum.

3  Experimental results

Patterns were visualized by light reflected from the liquid 
surface by a high-speed REDLAKE MotionXTRA HG-
100K camera, which looks directly down onto the surface 
at a height of 80 cm from the vessel. Images were captured 
at a spatial resolution of 1504 × 1128 pixels. At this resolu-
tion, the videos were recorded at a speed of 1000 fps and 
exposition time of 525 μs for the measurements. A square 

array of four fluorescent 105 W lamps was mounted sym-
metrically for illumination at a height of 20 cm from the 
vessel. The integration time of the images (=4.95 × 10−4 s) 
is kept well below half the period of the waves, and hence 
they can be considered as instantaneous photographs of the 
surface. The images were processed and stored in a dedi-
cated digital imaging system. To avoid modifications of 
the density, viscosity, and surface tension of water due to 
heating, the light bulbs were turned on only during video 
recording for no more than 10 s.

To determine the regions in the parameter space (A,F) 
where synchronized regular patterns form over the cell 
network, we have varied the excitation frequency and 
amplitude in the intervals 10 ≤ F ≤ 24 Hz and 0.1 ≤ A ≤ 3 
mm, respectively. The dots in Fig. 1 mark the locus in the 
(A,F)-space of the experimental tests. The minimum fre-
quency depicted in Fig. 1 corresponds to 10 Hz because 
below this frequency, the wavelength of the perturba-
tions at the surface are larger than the cell size and so 
no excitation of the liquid surface is observed. Just above 
10 Hz, the wavelengths become comparable to the length 
of the cell diagonals (ld ≈ 3.53 cm) and, after a transient 
state, adjacent cells progressively synchronize to form a 
regular pattern over the whole grid (Delon et  al. 2010). 
For forcing frequencies in the range 10 ≤ F ≤ 18 Hz, the 
maximum amplitude was set to 3 mm, while at higher 
exciting frequencies the maximum amplitude was low-
ered to about 2 mm (for F = 24 Hz) in order not to exceed 
60% of the shaker’s stroke capability. Each experiment 
(marked by a dot in Fig. 1) was repeated up to five times 
to assess the reproducibility of the observed patterns for 
the given amplitude and frequency of the forcing.

In a network of interconnected cells of small size, as the 
one employed here, the effect of the capillary menisci at the 
cell walls plays an important role. For instance, the external 
forcing induces the characteristic height of the menisci to 
evolve according to the relation (Douady 1990)
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Fig. 1  Locus in the (A,F)-space of the experimental tests
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where � is the surface tension of the liquid, � its density, 
and g(t) the modulated gravitational acceleration defined 
by Eq. (1). Equation (2) is the instantaneous capillary 
length. In the absence of forcing, i.e., when g(t) = g, it 
just defines the capillary length, lc. Accordingly, the time 

(2)hm(t) =

[
�

�g(t)

]1∕2
,

variation of the meniscus height generates capillary waves, 
which dissipate by viscous shear and interact with the Fara-
day waves excited subharmonically. In small-size contain-
ers, the coupling between the meniscus and the Faraday 
waves is strong, inducing a stabilizing effect on the liquid 
surface (Nguyem and Caps 2011), and so more energy is 
required to excite Faraday waves than in large recipients or 
unbounded fluids. Preliminary tests in the laboratory have 
shown that when the cell walls are coated with Teflon tape, 
the height of the meniscus is considerably reduced and an 
almost flat air/liquid interface is observed at contact with 
the solid walls, i.e., the wetting angle becomes ≈90◦.

Regularly distributed bumps of liquid are formed at 
the cell intersections for forcing frequencies in the range 
10 ≤ F < 14 Hz. Figure  2 (top) shows the regions (A 
and B) in the (A,F)-space where such symmetric patterns 
appear. The same is also depicted in terms of the accelera-
tion amplitude, � , of the forcing oscillations (bottom). Two 
different modes are observed. A square lattice of bumps 
forms for 10 ≤ F ≤ 11 Hz as shown in the top view images 
of Fig. 3, corresponding to region A in Fig. 2. If the driv-
ing force is maintained, the same pattern is recurrently 
repeated with alternation of the peaks occurring at the grid 
nodes at twice the network scale every half a period, as we 
may see by comparing the two images of Fig.  3. In this 
case, neighbor cells arranged in a square-like distribution 
collaborate synchronously to form a well-defined bump 
at their common node by sharing nearly all of their liquid 
content. The dynamics observed in Fig. 3 is representative 
of the wave patterns that arise near the transition when the 
forcing exceeds the Faraday threshold. Synchronization is 
due to cell waves interacting diagonally and converging at 
grid nodes. A similar collective behavior was also observed 
at higher exciting frequencies in the range 11 < F < 14 Hz, 
but this time tilted by 45◦ with respect to the grid orienta-
tion as shown in Fig. 4, corresponding to region B in Fig. 2. 
We may see that as the forcing frequency is increased, the 
amplitude range for which these regular patterns appear 
decreases. Similar patterns were reported by Delon et  al. 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10  12  14  16  18  20  22  24

A 
(m

m
) A

B

C

D
E

 0

 1

 2

 3

 4

 5

 10  12  14  16  18  20  22  24

Γ

F  (Hz)

A B C D E

Fig. 2  Amplitude (top) and dimensionless acceleration (bottom) of 
the forcing oscillations as functions of the exciting frequency. The 
gray-toned areas show the experimentally determined regions where 
regular patterns form as a result of the collective behavior of neigh-
boring cells (A and B), where localized oscillons arise within individ-
ual cells forming an ordered matrix (C and D), and where disordered 
periodic wave patterns are seen within each individual cell (E)

Fig. 3  Top view images of the 
resulting pattern for F = 10 Hz, 
amplitude A = 2.0 mm, and 
acceleration � = 0.81. Bumps 
of liquid form at the nodes 
of adjacent cells at the dual 
vertical and horizontal network 
scale. Both photographs are 
separated by half a wave period, 
showing alternation of the bump 
positions in the grid



Exp Fluids  (2017) 58:47  

1 3

Page 5 of 11  47 

(2010) for the frequency intervals 10 ≤ F ≤ 12 Hz and 
12 < F ≤ 16 Hz, respectively, using square cells of higher 
height (2.5 cm) and filled with liquid up to a height of 1.3 
cm.

At F = 14 Hz, two different patterns coexist simul-
taneously, corresponding to a mixed state as shown in 
Fig.  5 for A = 1.2 mm and � = 1.26. On the left part of 
the grid, oscillons are formed at the center of individual 
cells, while a regular lattice of bumps as the one shown 
in Fig. 4 is formed on the right part. When the experiment 
was repeated with identical parameters and conditions the 
same mixed state was reproduced. Evidently, F = 14 Hz 
corresponds to a transition frequency. Changing the driving 
amplitude at this frequency causes the patterns to be mixed 
differently over the grid. At even higher frequencies in the 
interval 14 < F ≤ 23 Hz, the wavelength of the driving 
oscillations becomes either comparable or smaller than half 
the cell diagonals and so collective behavior is no longer 
seen because the waves remain trapped within individual 
cells, forming localized oscillons at their approximate cent-
ers (regions C and D in Fig.  2). The difference between 
these regions lies on the way the oscillons are formed 
within the cells. In region C, an oscillon arises because 

the liquid in a cell converges radially to its center, while 
in region D the same occurs because of wave interaction 
only along the diagonals of a cell. Compared to regions A 
and B, localized oscillons are observed for a wider range 
of driving frequencies. However, as the driving frequency 
increases, the range of amplitudes for which oscillons 
form becomes progressively shorter. The top views of 
Fig. 6 shows an ordered matrix of oscillons for F = 16 Hz, 
A = 1.0 mm, and � = 1.03. Oscillons of opposite polarity 
are seen in a few cells on the right part of the grid. This 
inversion of polarity was observed for all driving param-
eters falling within regions C and D, with the distribution 
of up and down oscillons varying rather irregularly with 
the driving frequency and amplitude. No obvious correla-
tion between the grid fraction occupied by oscillons with 
inverted polarity and the driving parameters could be estab-
lished from the present experiments.

At F > 23 Hz, a disordered pattern is observed within 
each cell (region E in Fig.  2). Figure  7 shows the top 
view images of the grid for F = 24 Hz, A = 0.7 mm, and 
� = 1.624. The wave field in all cells looks random and is 
dominated by oscillating blobs approximately a quarter of 
the cell size in diameter. Although the number of blobs per 

Fig. 4  Top view images of the 
resulting pattern for F = 12 Hz, 
amplitude A = 1.3 mm, and 
acceleration � = 0.75. A square 
lattice is formed again but now 
tilted by 45◦ at the network 
scale. Both photographs are 
separated by half a wave period, 
showing alternation of the bump 
positions in the grid

Fig. 5  Top view images of a 
mixed pattern formed at F = 14 
Hz, amplitude A = 1.2 mm, and 
acceleration � = 1.26. A matrix 
of localized oscillons appears 
on the left part of the grid 
mixed with a regular pattern of 
bumps on the right part. The 
oscillons alternate their polarity 
synchronously with the bump 
positions every half a period as 
can be seen by comparing both 
photographs
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cell is never greater than three in our case, the observed wave 
field resembles the water surface ripples observed by Shats 
et al. (2012), who interpreted them as made of oscillons inter-
acting on the capillary–gravity range (Miles and Henderson 
1990; Perlin and Schultz 2000). The blobs in Fig. 7 are seen 
to move randomly on the surface, and in many cases they col-
lide and merge with their companion blobs. However, the fre-
quency spectrum of the surface gradient is not random, but 
consists of spectrally broadened harmonics with frequencies 
fn = nF∕2 for n = 2, 4,… (Shats et al. 2012).

The best fits to the upper and lower amplitude curves 
bounding the regions A–E in Fig.  2 are given with a 
coefficient of determination R2 = 1 by the fourth degree 
polynomials

respectively. For all driving amplitudes and frequencies 
below A−(F), the resulting forcing �  is not enough to pro-
duce appreciable deformations of the liquid surface, while 

(3)
A+(F) = 3.0 × 10−5F4 − 2.5 × 10−3F3 + 0.0945F2

− 1.7217F + 13.836,

(4)
A−(F) = 9.0 × 10−6F4 − 8.0 × 10−4F3 + 0.0304F2

− 0.5611F + 4.7093,

highly disordered wave fields were observed for all ampli-
tudes and frequencies above the curve A+(F). In this latter 
case, pronounced liquid spikes arose from the liquid sur-
face accompanied by pinching and ejection of small drops 
from each cell in all directions. A detailed comparison of 
the wave fields over the grid has shown that in all cases, the 
resulting patterns were different from cell to cell. As was 
pointed out by Shats et al. (2012), a seemingly chaotic state 
on the water surface can be turned into ordered matrices 
of oscillons by just reducing their mobility via the addition 
of a viscous solution. At higher frequencies, we have sepa-
rated this chaotic region from region E based on the fact 
that in the latter case the disordered wave field was never 
accompanied by pinching and/or ejection of liquid from the 
cells.

As mentioned previously, in the present experiments 
the liquid bumps form two different patterns of square 
lattices for frequencies in the range 10 ≤ F < 14 Hz due 
to diagonal wave interaction between adjacent square 
cells. For comparison, previous experiments using a 
triangular cell network with cells of sides 2.5 cm and 
depth 1.5 cm each, filled with colored distilled water up 
to a height of 0.7 cm, have shown the formation of four 

Fig. 6  Top view images of the 
resulting pattern for F = 16 Hz, 
amplitude A = 1.0 mm, and 
acceleration � = 1.03. Local-
ized oscillons at the approxi-
mate centers of individual 
cells are formed. Oscillons of 
opposite polarity are seen in 
some cells on the right. Alterna-
tion of the polarity occurs every 
half a period as can be seen by 
comparing both photographs

Fig. 7  Top view images of the 
resulting pattern for F = 24 
Hz, amplitude A = 0.7 mm, 
and acceleration � = 1.624. A 
random wave field consisting of 
oscillating blobs forms within 
each individual cell. The blobs 
invert their polarity approxi-
mately every half a period as 
can be seen by comparing both 
photographs
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different patterns between 10 and 28 Hz (Peña-Polo et al. 
2014). The increased number of patterns in these experi-
ments is due to an extra degree of freedom available for 
wave interaction in a triangular cell, i.e., the three alti-
tudes in a triangle against the two diagonals of a square. 
Evidently, the number and nature of the patterns that 
form as well as the frequency ranges for which collec-
tive behavior between adjacent cells is observed strongly 
depend on the grid geometry. Unfortunately, a quantita-
tive comparison between both types of experiments is not 
possible because a waveform correlation analysis for the 
triangular data is not available.

4  Discussion of results

4.1  Waveform correlation analysis

A waveform analysis was performed by processing all 
recorded videos, pertaining to the forcing parameters fall-
ing within regions A–E in Fig.  2, using a Pearson corre-
lation of the time series of photographs composing each 
video. To get information about the waveforms, we first 
calculate the correlation coefficient as a function of time by 
correlating the set of images corresponding to the first wave 
period to those corresponding to subsequent wave periods 
in the video. The two-dimensional correlation coefficients 
constructed this way provides a measure of the differences 
between the first set of photographs with all successive 
ones contained in the video. The resulting power spectrum 
is generated by computing the fast Fourier transform (FFT) 
of the two-dimensional correlation array. The power spec-
tra from the video processing of subsequent trials of the 
same experiment were seen to overlap in all cases consid-
ered, implying that the patterns shown in Figs.  3, 4, 5, 6 
and 7 are indeed quite robust.

The resulting waveforms (top) and power spectra (bot-
tom) corresponding to the experiments of Figs.  3, 4, and 
6 are shown in Figs. 8, 9, and 10, respectively. The peaks 
in Figs.  8 and 9 have C ≈ 0.8, meaning that the strength 
of the correlation between the liquid bumps in the reg-
ular lattices of Figs.  3 and 4 is moderately high. In con-
trast, the wave valleys look noisy and are poorly correlated 
(C < 0.2). Physically, they represent the instants when the 
cells become almost depleted of liquid. The low correla-
tion is due to the amount of depletion not being exactly the 
same in all cells in space and time, while the noise is pro-
duced by the vibration of the remnant liquid attached to the 
walls and bottom of some cells. The waveform in Fig. 10 
corresponds to the experiment of Fig. 6, where an ordered 
matrix of oscillons forms at a forcing frequency of 16 Hz. 
Compared to Figs.  8 and 9, all peaks are not at the same 
height and the data show a moderate positive correlation, 

implying that not all oscillons in the matrix reach the same 
altitude and have the same liquid content due to nonlinear 
effects. In all cases, the standing waves are periodic and the 
periodicity decreases with increasing forcing frequency, 
F, consistently with the capillary–gravity wave disper-
sion relation. The bottom plot in each figure displays the 
frequency spectrum of the wave signals. The dominant 
response frequency always occurs at half the driving fre-
quency, i.e., f = F∕2, corresponding to the first resonance 
condition (n = 1) (Benjamin and Ursell 1954; Miles 1993; 
Douady 1990). A second peak of lower strength occurs 
at f = F, corresponding to the first harmonic (n = 2). In 
most cases, higher harmonics with n = 4, 6,… are either 
extremely weak or even not present. The high peaks to the 
left of the power spectra (around f = 0) are spurious and 
not present in the input. They appear in the frequency spec-
trum because the FFT was performed on waveforms that 
possess end-point discontinuities and that do not contain a 
whole number of periods as can be seen from the top plots 
of Figs. 8, 9, 10 and 11. Therefore, the FFT evaluates these 
waveforms with an end-point error and generates a power 
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Fig. 8  Pearson correlation coefficient as a function of time showing 
the correlated waveform for the regular lattice of Fig. 3 (top) and the 
corresponding frequency spectrum as calculated from the fast Fou-
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the maximum frequency peak is at f = 5 Hz, corresponding exactly 
to half the forcing frequency F = 10 Hz for this experiment
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spectrum containing false frequency components represent-
ative of the end-point mismatch.

The correlated waveform and corresponding frequency 
spectrum of the random wave field of Fig. 7 are shown in 
Fig. 11. The motion is periodic and the strength of the cor-
relation is moderately high, showing harmonic responses 
fn = nFn∕2 for n = 2 and n = 4. At these higher frequen-
cies, quasistanding waves are found to coexist with a spa-
tially extended fluid transport. More specifically, it was 
recently demonstrated by Francois et  al. (2014) that the 
ordered–disordered transition in Faraday waves from a 
lattice of vertically oscillating solitons to a complex fluid 
motion, whose statistics is similar to that of two-dimen-
sional turbulence, is due to the generation of vorticity in 
the horizontal flow by the oscillons themselves at their size 
scale. As this horizontal energy is spread over a range of 
scales by the Kolmogorov–Kraichnan inverse energy cas-
cade, the interaction among these vortices explains how 
quasistanding waves may fuel two-dimensional turbulence. 
Although Francois et al. (2014) experiments refer to a sin-
gle circular container, the wave-field topography observed 
within individual cells in our experiments for F > 23 Hz 
(region E in Fig. 2) is remarkably similar to the disordered 

patterns seen in their experiments. Therefore, as they 
claimed, two-dimensional Navier–Stokes turbulence may 
well be a source of disorder in Faraday waves.

4.2  Comparison with theory

For parametrically driven infinitesimal surface waves, 
the surface deformation, � = �(�, t), is described by the 
damped Mathieu equation (Benjamin and Ursell 1954)

where � is the wavevector (k = |�|), Σ = Σ(k) is the attenua-
tion due to viscous dissipation and friction, and �0 = �0(k) 
is the angular frequency of linear waves without damping 
and forcing. For capillary–gravity waves, �0 is given by

while the dimensionless forcing is

(5)�tt + 2Σ�t + �2
0
[1 − � cos(�t)]� = 0,

(6)�2
0
=

(
gk +

�k3

�

)
tanh(kd),

(7)� = ��2A
(
�g + �k2

)−1
,
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Fig. 9  Same as in Fig. 8, but with the regular lattice of Fig. 4. The 
wave period is ≈0.166 s and the maximum frequency peak is at f = 6 
Hz, corresponding to half the forcing frequency F = 12 Hz for this 
experiment
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Fig. 10  Same as in Figs.  8 and 9 for the ordered matrix of oscil-
lons shown in Fig.  6. The wave period is ≈0.063 s and the maxi-
mum frequency peak is at f = 8 Hz, corresponding to half the forc-
ing frequency F = 16 Hz for this experiment. The second peak at 
f = F = 16 Hz corresponds to the first harmonic response (n = 2)
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where � and � are, respectively, the surface tension and 
density of the liquid, and d is the liquid depth. For kd ≫ 1,

tanh(kd) → 1 and Eq. (6) gives the linear dispersion equa-
tion for deep water. Converting Eq. (5) into the undamped 
Mathieu equation

through the changes of variables t → � = �t∕2 and 
� → � = �(�, t) exp(Σt), where p = 4(�2

0
− Σ2)∕�2 and 

q = 2��2
0
∕�2, Rajchenbach and Clamond (2015) have 

recently demonstrated that the Floquet exponent, �(p, q), 
in the aperiodic solutions of Eq. (8), which correspond to 
periodic solutions of Eq. (5), obeys the relation

which establishes an implicit dispersion equation relating 
the wavenumber k and the angular frequency � = n�∕2 for 
Faraday waves via �0, � , and Σ. As was noted by Rajchen-
bach and Clamond (2015), the key point here is that 
� = 2�fn = n�∕2 is the actual wave angular frequency and 
not �0, as is often assumed in analyses of Faraday waves. 
Indeed, �0 is the angular frequency of unforced, undamped 

(8)��� +
[
p − 2q cos(2�)

]
� = 0,

(9)�(p, q) = Re(�) + iIm(�) =
2�

�
+ i

2Σ

�
= n + i

2Σ

�
,

waves for which � = Σ = 0, while Eq. (9) is the actual dis-
persion relation of Faraday waves for nonzero forcing and 
dissipation.

Using a weakly nonlinear model, Rajchenbach and Cla-
mond (2015) also demonstrated that the rest state is unstable 
if 𝛤 > 𝛤c, where

is the minimum forcing necessary to destabilize the rest 
state and generate surface waves. Thus, when 𝛤 > 𝛤c the 
rest state becomes unstable through a supercritical transi-
tion for short waves. In this expression, �0 and �  are related 
to k through Eqs. (6) and (7), respectively. For a finite liq-
uid depth as is the case in the present experiments (d = 0.7 
cm), the attenuation factor in the limit of small viscosities 
can be approximated by Hunt (1964)

where � is the kinematic viscosity of the liquid. The first 
term on the right-hand side of Eq. (11) is the contribution 
of bulk dissipation, while the second term is the attenua-
tion due to friction with the bottom. Using Eqs. (6), (7), 
and (11), Eq. (10) can be written in terms of the critical 
wavenumber kc as

where

Taking � = 998.2 kg m−3, � = 1.0034 × 10−6 m2 s−1, and 
� = 7.275 × 10−2 kg s−2 for the density, kinematic vis-
cosity, and surface tension of water at 20 ◦C, Eq. (12) 
predicts wavelengths between �c ≈ 3.87 and ≈4.33 cm 
for 1.5 ≤ A ≤ 3 mm and F = 10 Hz. For the same ampli-
tude range and F = 11 Hz, the critical wavelengths are in 
the interval between ≈3.37 and ≈3.82. Within the mar-
gin of error implied by the weakly nonlinear approxima-
tion, these values are actually close to the length of the 
cell diagonals (ld ≈ 3.53 cm) below which Faraday waves 
are excited in the experiments. At lower forcing frequen-
cies for 1.5 ≤ A ≤ 3 mm, Eq. (12) yields wavelengths larger 
than ≈4.50 cm for F = 9 Hz so that no deformations of the 
water surface are visible. For F = 14 Hz, where a transition 
occurs from regular square patterns to ordered matrices of 

(10)�c = 4

[(
1 −

�0

�

)2

+
(
Σ

�

)2
]1∕2

,

(11)

Σ(k) = �k2
[
2 +

coth(2kd)

sinh(2kd)

]
+

2kd

sinh(2kd)

(
g1∕2�k

8d3∕2

)1∕2

,

(12)(�g + �k2
c
)2 (kc) − �3F3�A = 0,

(13)

 (kc) = Σ2(kc) +

(
gkc +

�k3
c

�

)
tanh (kcd)

− 2�F

[(
gkc +

�k3
c

�

)
tanh (kcd)

]1∕2

+ �2F2.
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Fig. 11  Same as in Figs.  8, 9, and 10 for the disordered wave pat-
terns observed in Fig. 7. The wave period is ≈0.021 s and this time 
the surface waves are harmonic with the maximum frequency 
response (n = 2) at f = F = 24 Hz. A second peak occurs at the sec-
ond harmonic (n = 4, f = 2F = 48 Hz)
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oscillons, the predicted wavelengths are close to half the 
cell diagonals (≈1.8 cm). For F > 14 Hz, the predicted 
wavelengths become smaller than half the cell diagonals 
and therefore the waves remain constrained within individ-
ual cells.

For capillary–gravity waves with no attenuation, the dis-
persion relation is given by Eq. (6) with �0 → � = �F. In 
contrast to Eq. (12), the critical wavelengths are now inde-
pendent of the forcing amplitude. The solution of Eq. (6) 
predicts wavelengths larger than Eq. (12) for all frequen-
cies. For instance, at F = 10 Hz the predicted wavelength is 
�c ≈ 4.96 cm, which is larger than the size of the cells for 
excitation of subharmonic waves. Only for F = 14 Hz does 
the wavelength become ≈3.42 Hz, implying a shift from 
the experimental minimum driving frequency of about 4 
Hz. Even for F = 23 Hz, Eq. (6) yields �c ≈ 2 cm, which is 
still larger than half the length of the cell diagonals. Thus, 
we may then conclude that compared to Eq. (6) the weakly 
nonlinear theory of Rajchenbach and Clamond (2015) is 
predicting fairly well the bifurcation from rest as well as 
the transition frequency from a regular pattern to ordered 
oscillons within individual cells, yielding a minimum driv-
ing frequency of ≈11 Hz against 10 Hz for the experiments 
and a transition frequency very close to the experimen-
tal value of 14 Hz. However, considering that the present 
Faraday wave experiments are rather far from traditional, 
it would be necessary to validate the above conclusions 
against more classical experiments.

5  Conclusions

We have reported experimental observations of the Fara-
day instability in a network of small square cells filled with 
water for forcing frequencies and amplitudes in the inter-
vals 10 ≤ F ≤ 24 Hz and 0.1 ≤ A ≤ 3 mm, respectively.

The minimum driving frequency for which periodic sur-
face waves are excited over the cell network corresponds 
to 10 Hz, because below this value the wavelengths of the 
perturbations at the surface become larger than the cell 
size and so no surface waves are observed. Square lat-
tice patterns arise for driving frequencies in the interval 
10 ≤ F < 14 Hz. After a transient state, adjacent cells expe-
rience a synchronized collective behavior where cell waves 
interact diagonally and converge at grid nodes, forming a 
square lattice of liquid bumps in much the same way as 
described by Delon et al. (2010). Recurrent alternation of 
the bumps is seen to occur every half a period at twice the 
network scale. At higher forcing frequencies in the range 
14 < F ≤ 23 Hz, collective behavior is no longer observed 
as the waves remain trapped within individual cells, form-
ing localized oscillons at their approximate centers and giv-
ing rise to a matrix of ordered oscillons over the entire grid. 

We demonstrate that for such regular patterns, wave motion 
within individual cells is highly correlated with a domi-
nant response frequency corresponding exactly to f = F∕2. 
Other minor peaks in the frequency spectra were found to 
coincide with harmonic response frequencies fn = nF∕2 
for n = 2, 4,… However, in many, if not in most cases, the 
only relevant harmonic frequency occurs for n = 2, with 
the other harmonics being negligible or even not present.

At frequencies F > 23 Hz of the driving force, a dis-
ordered wave pattern is observed within individual cells 
for a narrow range of forcing amplitudes between 0.5 and 
0.7 mm. At amplitudes higher than 3 mm for F = 12 Hz 
and 0.7 mm for F = 24 Hz, a region is encountered in the 
(A,F)-space, where surface waves converge within individ-
ual cells to produce liquid spikes accompanied by pinching 
and ejection of small drops from the cells in all directions. 
An analysis of such chaotic states escapes from the aim of 
this study and will be considered in a forthcoming paper. In 
the former case, the wave field looks random and is domi-
nated by oscillating blobs approximately a quarter of the 
cell size in diameter. The surface topography resembles the 
water surface ripples observed by Shats et al. (2012), who 
interpreted them as made of oscillons interacting on the 
capillary–gravity scale with the frequency spectrum of the 
surface gradient being not random and consisting of spec-
trally broadened harmonics fn = nF∕2 (with n = 2, 4,…). 
While in their case, the dominant response frequency was 
subharmonic ( f = F∕2), in our experiments the maximum 
response is harmonic with f = F (n = 2). For experi-
ments similar to those of Shats et al. (2012), Francois et al. 
(2014) demonstrated that the source of disorder is due to 
Navier–Stokes two-dimensional turbulence fueled by the 
interaction of vortices in the horizontal flow as generated 
at the oscillons’ scale by their up and down motions. While 
this interesting scenario may well explain the ordered–dis-
ordered transition in Faraday waves and how quasistanding 
waves may fuel two-dimensional turbulence, it could also 
provide a different pathway to interpret the disordered–cha-
otic transition when the liquid is submitted to large forcing 
amplitudes.

As a final remark, the experimentally determined mini-
mum forcing necessary to destabilize the rest state and 
generate surface waves was found to be consistent with 
predictions from a weakly nonlinear stability analysis of 
stationary solutions as derived from the dispersion rela-
tion of Faraday waves with nonzero forcing and dissipa-
tion (Rajchenbach and Clamond 2015). Moreover, a few 
experiments have shown that varying the depth of the liq-
uid affects the strength of the forming bumps and oscillons. 
Future work will be addressed to establish a correlation 
between the liquid content in the cells and the size of the 
liquid peaks. Further work in this line will also focus on 
studying the effects of changing the size, the geometry, and 
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the material of the cell network. In particular, reverting to a 
material which minimizes the extent of the meniscus would 
be of interest to uncouple the effects of the capillary waves 
induced by the meniscus dynamics from the Faraday waves 
in such small containers (Nguyem and Caps 2011).
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